Maximal representations of cocompact complex hyperbolic lattices, a uniform approach
[Représentations maximales des réseaux hyperboliques complexes cocompacts : une approche unifiée]
Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 231-281.

Nous complétons la classification des représentations maximales des réseaux hyperboliques complexes dans les groupes de Lie hermitiens en traitant le cas des groupes exceptionnels E 6(-14) et E 7(-25) . Nous montrons que si ρ est une représentation maximale d’un réseau hyperbolique complexe cocompact ΓSU(1,n), avec n>1, dans un groupe hermitien G de type exceptionnel, alors n=2 et G =E 6(-14) , et nous décrivons complètement la représentation ρ. Le cas des groupes hermitiens classiques avait été traité par Vincent Koziarz et le deuxième auteur cité [KM17]. Cependant, nous ne nous restreignons pas immédiatement aux groupes exceptionnels : nous proposons au contraire une approche unifiée, aussi indépendante que possible de la classification des groupes de Lie hermitiens simples. Cette approche repose sur une étude de la représentation cominuscule de la complexification du groupe d’arrivée G . Dans le cas où G est de type tube, nos méthodes permettent en particulier d’établir une inégalité sur l’invariant de Toledo de la représentation ρ:ΓG qui est plus forte que l’inégalité de Milnor-Wood et qui exclut donc la possibilité d’une représentation maximale pour de tels groupes.

We complete the classification of maximal representations of cocompact complex hyperbolic lattices in Hermitian Lie groups by dealing with the exceptional groups E 6(-14) and E 7(-25) . We prove that if ρ is a maximal representation of a cocompact complex hyperbolic lattice ΓSU(1,n), n>1, in an exceptional Hermitian group G , then n=2 and G =E 6(-14) , and we describe completely the representation ρ. The case of classical Hermitian target groups was treated by Vincent Koziarz and the second named author [KM17]. However we do not focus immediately on the exceptional cases and instead we provide a more unified perspective, as independent as possible of the classification of the simple Hermitian Lie groups. This relies on the study of the cominuscule representation of the complexification G of the target group G . As a by-product of our methods, when the target Hermitian group G has tube type, we obtain an inequality on the Toledo invariant of the representation ρ:ΓG which is stronger than the Milnor-Wood inequality (thereby excluding maximal representations in such groups).

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.93
Classification : 53C35,  22E40,  32L05,  32Q15,  17B10,  20G05
Mots clés : Réseaux hyperboliques complexes, inégalité de Milnor-Wood, représentations maximales, représentations cominuscules, groupes de Lie exceptionnels, fibrés de Higgs harmoniques, feuilletages holomorphes
@article{JEP_2019__6__231_0,
     author = {Chaput, Pierre-Emmanuel and Maubon, Julien},
     title = {Maximal representations of cocompact complex hyperbolic lattices, a uniform approach},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {231--281},
     publisher = {Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.93},
     mrnumber = {3959074},
     zbl = {07057061},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.93/}
}
TY  - JOUR
AU  - Chaput, Pierre-Emmanuel
AU  - Maubon, Julien
TI  - Maximal representations of cocompact complex hyperbolic lattices, a uniform approach
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
DA  - 2019///
SP  - 231
EP  - 281
VL  - 6
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.93/
UR  - https://www.ams.org/mathscinet-getitem?mr=3959074
UR  - https://zbmath.org/?q=an%3A07057061
UR  - https://doi.org/10.5802/jep.93
DO  - 10.5802/jep.93
LA  - en
ID  - JEP_2019__6__231_0
ER  - 
Chaput, Pierre-Emmanuel; Maubon, Julien. Maximal representations of cocompact complex hyperbolic lattices, a uniform approach. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 231-281. doi : 10.5802/jep.93. http://www.numdam.org/articles/10.5802/jep.93/

[AMRT10] Ash, Avner; Mumford, David; Rapoport, Michael; Tai, Yung-Sheng Smooth compactifications of locally symmetric varieties, Cambridge University Press, Cambridge, 2010 | Zbl 1209.14001

[BGPG03] Bradlow, Steven B.; Garcia-Prada, Oscar; Gothen, Peter B. Surface group representations and U(p,q)-Higgs bundles, J. Differential Geom., Volume 64 (2003), pp. 111-170 | Article | MR 2015045 | Zbl 1070.53054

[BGPG06] Bradlow, Steven B.; Garcia-Prada, Oscar; Gothen, Peter B. Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata, Volume 122 (2006), pp. 185-213 | Article | MR 2295550 | Zbl 1132.14029

[BGPR17] Biquard, Olivier; García-Prada, Oscar; Rubio, Roberto Higgs bundles, the Toledo invariant and the Cayley correspondence, J. Topology, Volume 10 (2017) no. 3, pp. 795-826 | Article | MR 3797597 | Zbl 1393.14032

[BH99] Bridson, Martin R.; Haefliger, André Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | MR 1744486 | Zbl 0988.53001

[BI07] Burger, Marc; Iozzi, Alessandra Bounded differential forms, generalized Milnor-Wood inequality and an application to deformation rigidity, Geom. Dedicata, Volume 125 (2007), pp. 1-23 | Article | MR 2322535 | Zbl 1134.53020

[BIW09] Burger, Marc; Iozzi, Alessandra; Wienhard, Anna Tight homomorphisms and Hermitian symmetric spaces, Geom. Funct. Anal., Volume 19 (2009) no. 3, pp. 678-721 | Article | MR 2563767 | Zbl 1188.53050

[BIW10] Burger, Marc; Iozzi, Alessandra; Wienhard, Anna Surface group representations with maximal Toledo invariant, Ann. of Math. (2), Volume 172 (2010), pp. 517-566 | Article | MR 2680425 | Zbl 1208.32014

[BM15] Buch, Anders S.; Mihalcea, Leonardo C. Curve neighborhoods of Schubert varieties, J. Differential Geom., Volume 99 (2015) no. 2, pp. 255-283 | Article | MR 3302040 | Zbl 06423472

[Bor69] Borel, Armand Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969

[Bou68] Bourbaki, Nicolas Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968 | Zbl 0186.33001

[Che97] Chevalley, Claude The algebraic theory of spinors and Clifford algebras, Collected works, 2, Springer-Verlag, Berlin, 1997 | MR 1636473 | Zbl 0899.01032

[Cor88] Corlette, Kevin Flat G-bundles with canonical metrics, J. Differential Geom., Volume 28 (1988), pp. 361-382 | Article | MR 965220 | Zbl 0676.58007

[Del80] Deligne, Pierre La conjecture de Weil. II, Publ. Math. Inst. Hautes Études Sci., Volume 52 (1980), pp. 137-252 | Article | Zbl 0456.14014

[FH91] Fulton, William; Harris, Joe Representation theory. A first course, Graduate Texts in Math., 129, Springer-Verlag, New York, 1991 | Zbl 0744.22001

[Gro94] Gross, Benedict H. A remark on tube domains, Math. Res. Lett., Volume 1 (1994) no. 1, pp. 1-9 | Article | MR 1258484 | Zbl 0873.32032

[GW12] Guichard, Olivier; Wienhard, Anna Anosov representations: domains of discontinuity and applications, Invent. Math., Volume 190 (2012), pp. 357-438 | Article | MR 2981818 | Zbl 1270.20049

[Ham13] Hamlet, Oskar Tight holomorphic maps, a classification, J. Lie Theory, Volume 23 (2013) no. 3, pp. 639-654 | MR 3115169 | Zbl 1277.32021

[HC56] Harish-Chandra Representations of semisimple Lie groups. VI. Integrable and square-integrable representations, Amer. J. Math., Volume 78 (1956), pp. 564-628 | Article | MR 82056 | Zbl 0072.01702

[Hel01] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Math., 34, American Mathematical Society, Providence, RI, 2001 (Corrected reprint of the 1978 original) | MR 1834454 | Zbl 0993.53002

[Her91] Hernández, Luis Maximal representations of surface groups in bounded symmetric domains, Trans. Amer. Math. Soc., Volume 324 (1991), pp. 405-420 | Article | MR 1033234 | Zbl 0733.32024

[Hit87] Hitchin, Nigel The self-duality equations on a Riemann surface, Proc. London Math. Soc., Volume 55 (1987), 59–126 pages | MR 887284 | Zbl 0634.53045

[Hit92] Hitchin, Nigel Lie groups and Teichmüller space, Topology, Volume 31 (1992), 449–473 pages | Zbl 0769.32008

[Hum75] Humphreys, James E. Linear algebraic groups, Graduate Texts in Math., 21, Springer, New York, 1975 | MR 396773 | Zbl 0325.20039

[Igu70] Igusa, Jun-ichi A classification of spinors up to dimension twelve, Amer. J. Math., Volume 92 (1970), pp. 997-1028 | Article | MR 277558 | Zbl 0217.36203

[Iha67] Ihara, Shin-ichiro Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan, Volume 19 (1967), pp. 261-302 | Article | MR 214807 | Zbl 0159.11102

[KM08] Koziarz, Vincent; Maubon, Julien Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type, Geom. Dedicata, Volume 137 (2008), pp. 85-111 | Article | MR 2449147 | Zbl 1159.22006

[KM10] Koziarz, Vincent; Maubon, Julien The Toledo invariant on smooth varieties of general type, J. reine angew. Math., Volume 649 (2010), pp. 207-230 | MR 2746471 | Zbl 1227.22012

[KM17] Koziarz, Vincent; Maubon, Julien Maximal representations of uniform complex hyperbolic lattices, Ann. of Math. (2), Volume 185 (2017), pp. 493-540 | Article | MR 3612003 | Zbl 1367.22004

[Kna02] Knapp, Anthony W. Lie groups beyond an introduction, Progress in Math., 140, Birkhäuser Boston, Inc., Boston, MA, 2002 | MR 1920389 | Zbl 1075.22501

[Kos12] Kostant, Bertram The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group, Moscow Math. J., Volume 12 (2012) no. 3, pp. 605-620 | Article | MR 3024825 | Zbl 1260.14058

[Man06] Manivel, Laurent Configurations of lines and models of Lie algebras, J. Algebra, Volume 304 (2006) no. 1, pp. 457-486 | Article | MR 2256401 | Zbl 1167.17001

[McG02] McGovern, William M. The adjoint representation and the adjoint action, Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action (Encyclopaedia Math. Sci.), Volume 131, Springer, Berlin, 2002, pp. 159-238 | MR 1925831 | Zbl 1036.17007

[Mok89] Mok, Ngaiming Metric rigidity theorems on Hermitian locally symmetric manifolds, Series in Pure Mathematics, 6, World Scientific, Teaneck, NJ, 1989 | MR 1081948 | Zbl 0912.32026

[Mur59] Murakami, Shingo Sur certains espaces fibrés principaux différentiables et holomorphes, Nagoya Math. J., Volume 15 (1959), pp. 171-199 | Article

[MX02] Markman, Eyal; Xia, Eugene Z. The moduli of flat PU(p,p)-structures with large Toledo invariants, Math. Z., Volume 240 (2002), pp. 95-109 | Article | MR 1906709 | Zbl 1008.32006

[NT76] Nakagawa, Hisao; Takagi, Ryoichi On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan, Volume 28 (1976) no. 4, pp. 638-667 | Article | MR 417463

[PS69] Piatetski-Shapiro, Ilya Automorphic functions and the geometry of classical domains, Mathematics and its applications, 8, Gordon and Breach Science Publishers, New York-London-Paris, 1969 | MR 252690 | Zbl 0196.09901

[Rat06] Ratcliffe, John Foundations of hyperbolic manifolds, Springer, New York, 2006 | Zbl 1106.51009

[Roy80] Royden, Halsey L. The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv., Volume 55 (1980) no. 4, pp. 547-558 | Article | MR 604712 | Zbl 0484.53053

[RRS92] Richardson, Roger; Röhrle, Gerhard; Steinberg, Robert Parabolic subgroups with abelian unipotent radical, Invent. Math., Volume 110 (1992) no. 3, pp. 649-671 | Article | MR 1189494 | Zbl 0786.20029

[Sam78] Sampson, Joseph H. Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4), Volume 11 (1978), pp. 211-228 | Article | MR 510549 | Zbl 0392.31009

[Sat80] Satake, Ichiro Algebraic structures of symmetric domains, Kanô Memorial Lectures, 4, Princeton University Press, Princeton, NJ, 1980 | MR 591460 | Zbl 0483.32017

[Sel60] Selberg, Atle On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960, pp. 147-164 | MR 130324 | Zbl 0201.36603

[Sim88] Simpson, Carlos Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., Volume 1 (1988), pp. 867-918 | Article | MR 944577 | Zbl 0669.58008

[Sim92] Simpson, Carlos Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci., Volume 75 (1992), pp. 5-95 | Article | Zbl 0814.32003

[Siu80] Siu, Yum-Tong The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2), Volume 112 (1980), pp. 73-111 | Zbl 0517.53058

[SV00] Springer, Tonny A.; Veldkamp, Ferdinand D. Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000 | Zbl 1087.17001

[SZ85] Steenbrink, Joseph; Zucker, Steven Variation of mixed Hodge structure. I, Invent. Math., Volume 80 (1985), pp. 489-542 | Article | Zbl 0626.14007

[SZ10] Sheng, Mao; Zuo, Kang Polarized variation of Hodge structures of Calabi-Yau type and characteristic subvarieties over bounded symmetric domains, Math. Ann., Volume 348 (2010) no. 1, pp. 211-236 | Article | MR 2657440 | Zbl 1213.14018

[Wol72] Wolf, Joseph A. Fine structure of Hermitian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970) (Pure and App. Math.), Volume 8, Dekker, New York, 1972, pp. 271-357 | MR 404716 | Zbl 0257.32014

[Xia00] Xia, Eugene Z. The moduli of flat PU(2,1) structures on Riemann surfaces, Pacific J. Math., Volume 195 (2000), pp. 231-256 | MR 1781622 | Zbl 1014.32010

Cité par Sources :