Superlensing using hyperbolic metamaterials: the scalar case
[Propriété de superlensing de dispositifs constitués de méta-matériaux hyperboliques : le cas scalaire]
Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 973-1003.

Dans cet article, on s’intéresse à la propriété de superlensing des méta-matériaux, c’est-à-dire à la possibilité d’imager un objet arbitraire, sans condition sur le rapport entre sa taille et la longueur d’onde de la lumière incidente. Nous proposons et analysons deux types de dispositifs constitués de méta-matériaux hyperboliques, qui possèdent cette propriété. L’étude de tels milieux est délicate, car les EDP qui les modélisent changent de type : elles sont elliptiques dans certaines régions de l’espace et hyperboliques dans les autres.

This paper is devoted to superlensing using hyperbolic metamaterials: the possibility to image an arbitrary object using hyperbolic metamaterials without imposing any conditions on the size of the object and the wave length. To this end, two types of schemes are suggested and their analysis are given. The superlensing devices proposed are independent of the object. It is worth noting that the study of hyperbolic metamaterials is challenging due to the change of type of the modeling equations, elliptic in some regions, hyperbolic in some others.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.61
Classification : 35B30,  35B40,  35J05,  35J70,  35M10,  35L53,  78A25
Mots clés : Matériaux à indice négatif, méta-matériaux hyperboliques, superlensing, équations elliptiques dégénérées
@article{JEP_2017__4__973_0,
     author = {Bonnetier, Eric and Nguyen, Hoai-Minh},
     title = {Superlensing using hyperbolic metamaterials: the scalar case},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {973--1003},
     publisher = {Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.61},
     mrnumber = {3714368},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.61/}
}
TY  - JOUR
AU  - Bonnetier, Eric
AU  - Nguyen, Hoai-Minh
TI  - Superlensing using hyperbolic metamaterials: the scalar case
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2017
DA  - 2017///
SP  - 973
EP  - 1003
VL  - 4
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.61/
UR  - https://www.ams.org/mathscinet-getitem?mr=3714368
UR  - https://doi.org/10.5802/jep.61
DO  - 10.5802/jep.61
LA  - en
ID  - JEP_2017__4__973_0
ER  - 
Bonnetier, Eric; Nguyen, Hoai-Minh. Superlensing using hyperbolic metamaterials: the scalar case. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 973-1003. doi : 10.5802/jep.61. http://www.numdam.org/articles/10.5802/jep.61/

[1] Ammari, H.; Ciraolo, G.; Kang, H.; Lee, H.; Milton, G. W. Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Rational Mech. Anal., Volume 208 (2013) no. 2, pp. 667-692 | Article | Zbl 1282.78004

[2] Bouchitté, G.; Schweizer, B. Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., Volume 63 (2010) no. 4, pp. 437-463 | Article | MR 2738456 | Zbl 1241.78001

[3] Bourgin, D. G.; Duffin, R. The Dirichlet problem for a vibrating string equation, Bull. Amer. Math. Soc., Volume 45 (1939), pp. 851-859 | Article | Zbl 0023.04201

[4] Brezis, H. Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011 | Zbl 1220.46002

[5] Topics in the mathematical modelling of composite materials, Progress in Nonlinear Differential Equations and their Applications, 31 (1997) | MR 1493036

[6] Droxler, J.; Hesthaven, J.; Nguyen, H-M. (In preparation)

[7] Grisvard, P. Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, 69, SIAM, Philadelphia, PA, 2011 | MR 3396210 | Zbl 1231.35002

[8] Jacob, Z.; Alekseyev, L. V.; Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit, Optics Express, Volume 14 (2006), pp. 8247-8256 | Article

[9] John, F. The Dirichlet problem for a hyperbolic equation, Amer. J. Math., Volume 63 (1941), pp. 141-154 | Article | MR 3346 | Zbl 67.0362.02

[10] Kohn, R. V.; Lu, J.; Schweizer, B.; Weinstein, M. I. A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., Volume 328 (2014) no. 1, pp. 1-27 | Article | MR 3196978 | Zbl 1366.78002

[11] Lai, Y.; Chen, H.; Zhang, Z.; Chan, C. T. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett., Volume 102 (2009) (093901) | Article

[12] Liu, Z.; Lee, H.; Sun, C.; Zhang, Z. Far-field optical hyperlens magnifying sub-diffraction-limited objects, Science, Volume 315 (2007), p. 1686-1686 | Article

[13] Milton, G. W.; Nicorovici, N.-A. On the cloaking effects associated with anomalous localized resonance, Proc. Roy. Soc. London Ser. A, Volume 462 (2006) no. 2074, pp. 3027-3059 | Article | MR 2263683 | Zbl 1149.00310

[14] Nguyen, H-M. Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients, Trans. Amer. Math. Soc., Volume 367 (2015) no. 9, pp. 6581-6595 | Article | MR 3356948

[15] Nguyen, H-M. Superlensing using complementary media, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 32 (2015) no. 2, pp. 471-484 | Article | MR 3325246 | Zbl 1316.35275

[16] Nguyen, H-M. Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 6, pp. 1327-1365 | Article | MR 3353803 | Zbl 1341.35031

[17] Nguyen, H-M. Localized and complete resonance in plasmonic structures, ESAIM Math. Model. Numer. Anal., Volume 49 (2015) no. 3, pp. 741-754 | Article | MR 3342226 | Zbl 1320.78005

[18] Nguyen, H-M. Cloaking using complementary media in the quasistatic regime, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1509-1518 | Article | MR 3569240 | Zbl 1375.35113

[19] Nguyen, H-M. Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients, J. Math. Pures Appl. (9), Volume 106 (2016) no. 2, pp. 342-374 | Article | MR 3515306 | Zbl 1343.35074

[20] Nguyen, H-M. Reflecting complementary and superlensing using complementary media for electromagnetic waves (2015) (arXiv:1511.08050)

[21] Nguyen, H-M. Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime, J. Anal. Math. (to appear) (arXiv:1511.08053) | Zbl 1341.35031

[22] Nguyen, H-M. Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object: the acoustic case, SIAM J. Math. Anal. (to appear) (arXiv:1607.06492) | Zbl 1375.78019

[23] Nguyen, H-M.; Nguyen, L. H. Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations, Trans. Amer. Math. Soc. Ser. B, Volume 2 (2015), pp. 93-112 | Article | MR 3418646 | Zbl 1336.35126

[24] Nicorovici, N. A.; McPhedran, R. C.; Milton, G. W. Optical and dielectric properties of partially resonant composites, Phys. Rev. B, Volume 49 (1994), pp. 8479-8482 | Article

[25] Pendry, J. B. Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000), pp. 3966-3969 | Article

[26] Pendry, J. B. Perfect cylindrical lenses, Optics Express, Volume 1 (2003), pp. 755-760 | Article

[27] Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials, Nature Photonics, Volume 7 (2013), pp. 948-957 | Article

[28] Protter, M. H. Unique continuation for elliptic equations, Trans. Amer. Math. Soc., Volume 95 (1960), pp. 81-91 | Article | MR 113030 | Zbl 0094.07901

[29] Ramakrishna, S. A.; Pendry, J. B. Spherical perfect lens: solutions of Maxwell’s equations for spherical geometry, Phys. Rev. B, Volume 69 (2004) (115115)

[30] Veselago, V. The electrodynamics of substances with simultaneously negative values of ε and μ, Uspehi Fiz. Nauk, Volume 92 (1964), pp. 517-526 | Article

Cité par Sources :