Une courbe de du Val de genre est une courbe plane de degré ayant points de multiplicité , un point de multiplicité et pas d’autre singularité. Nous montrons que le corang de l’application de Gauss-Wahl pour une courbe de du Val générale de genre impair () est égal à . Ceci, joint aux résultats de [1], montre que la caractérisation, obtenue dans [3], des courbes de Brill-Noether-Petri ayant une application de Gauss-Wahl non surjective comme sections hyperplanes de surfaces K3 et limites de celles-ci, est optimale.
A genus- du Val curve is a degree- plane curve having 8 points of multiplicity , one point of multiplicity , and no other singularity. We prove that the corank of the Gauss-Wahl map of a general du Val curve of odd genus () is equal to one. This, together with the results of [1], shows that the characterization of Brill-Noether-Petri curves with non-surjective Gauss-Wahl map as hyperplane sections of K3 surfaces and limits thereof, obtained in [3], is optimal.
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.43
Classification : 14J28, 14H51
Mots clés : Courbes, surfaces K3, fibrés vectoriels
@article{JEP_2017__4__257_0, author = {Arbarello, Enrico and Bruno, Andrea}, title = {Rank-two vector bundles on {Halphen} surfaces and the {Gauss-Wahl} map for du {Val} curves}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {257--285}, publisher = {Ecole polytechnique}, volume = {4}, year = {2017}, doi = {10.5802/jep.43}, zbl = {1368.14050}, mrnumber = {3623355}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.43/} }
TY - JOUR AU - Arbarello, Enrico AU - Bruno, Andrea TI - Rank-two vector bundles on Halphen surfaces and the Gauss-Wahl map for du Val curves JO - Journal de l’École polytechnique — Mathématiques PY - 2017 DA - 2017/// SP - 257 EP - 285 VL - 4 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.43/ UR - https://zbmath.org/?q=an%3A1368.14050 UR - https://www.ams.org/mathscinet-getitem?mr=3623355 UR - https://doi.org/10.5802/jep.43 DO - 10.5802/jep.43 LA - en ID - JEP_2017__4__257_0 ER -
Arbarello, Enrico; Bruno, Andrea. Rank-two vector bundles on Halphen surfaces and the Gauss-Wahl map for du Val curves. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 257-285. doi : 10.5802/jep.43. http://www.numdam.org/articles/10.5802/jep.43/
[1] Explicit Brill-Noether-Petri general curves, Comment. Math. Helv., Volume 91 (2016) no. 3, pp. 477-491 | Article | MR 3541717 | Zbl 1354.14050
[2] Mukai’s program for curves on a K3 surface, Algebraic Geom., Volume 1 (2014) no. 5, pp. 532-557 | Article | MR 3296804 | Zbl 1322.14062
[3] On hyperplane sections of K3 surfaces, Algebraic Geom. (to appear) (arXiv:1507.05002) | Zbl 06849619
[4] Singularities of moduli spaces of sheaves on K3 surfaces and Nakajima quiver varieties (2015) (arXiv:1505.00759) | Zbl 06863455
[5] Le théorème de Torelli pour les surfaces K3: fin de la démonstration, Geometry of K3 surfaces: moduli and periods (Palaiseau, 1981/1982) (Astérisque), Volume 126, Société Mathématique de France, Paris, 1985, pp. 111-121 | Numdam | MR 785227 | Zbl 0577.14030
[6] Rational surfaces with a large group of automorphisms, J. Amer. Math. Soc., Volume 25 (2012) no. 3, pp. 863-905 | Article | MR 2904576 | Zbl 1268.14011
[7] Determinantal equations for curves of high degree, Amer. J. Math., Volume 110 (1998) no. 3, pp. 513-539 (with an appendix with J. Harris) | Article | MR 944326
[8] On the Mori cone of blow-ups of the plane (2010) (arXiv:1001.5243)
[9] On Clifford’s theorem for singular curves, Proc. London Math. Soc. (3), Volume 108 (2014) no. 1, pp. 225-252 | Article | MR 3162826 | Zbl 1284.14044
[10] Koszul cohomology and the geometry of projective varieties, J. Differential Geometry, Volume 19 (1984) no. 1, pp. 125-171 (with an appendix by M. Green and R. Lazarsfeld) | Article | MR 739785
[11] The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010 | Article | Zbl 1206.14027
[12] Degenerations of K3 surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977) no. 5, pp. 1008-1042 | MR 506296 | Zbl 0387.14007
[13] Universal families of extensions, J. Algebra, Volume 83 (1983) no. 1, pp. 101-112 | Article | MR 710589 | Zbl 0518.14008
[14] The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982) (Ann. of Math. Stud.), Volume 106, Princeton Univ. Press, Princeton, NJ, 1984, pp. 101-119 | MR 756848 | Zbl 0576.32034
[15] Curves and K3 surfaces of genus eleven, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) (Lecture Notes in Pure and Appl. Math.), Volume 179, Dekker, New York, 1996, pp. 189-197 | MR 1397987 | Zbl 0884.14010
[16] On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., Volume 33 (1960), pp. 271-293 | Article | MR 126444 | Zbl 0100.16801
[17] Degeneration of surfaces with trivial canonical bundle, Ann. of Math. (2), Volume 113 (1981) no. 1, pp. 45-66 | Article | MR 604042 | Zbl 0426.14015
[18] Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri, Acta Math., Volume 168 (1992) no. 3-4, pp. 249-272 | Article | MR 1161267 | Zbl 0767.14012
[19] On cohomology of the square of an ideal sheaf, J. Algebraic Geom., Volume 6 (1997) no. 3, pp. 481-511 | MR 1487224 | Zbl 0892.14022
[20] Hyperplane sections of Calabi-Yau varieties, J. reine angew. Math., Volume 544 (2002), pp. 39-59 | MR 1887888 | Zbl 1059.14053
Cité par Sources :