Extremal norms for fiber-bunched cocycles
Journal de l’École polytechnique - Mathématiques, Volume 6 (2019), pp. 947-1004.

In traditional Ergodic Optimization, one seeks to maximize Birkhoff averages. The most useful tool in this area is the celebrated Mañé Lemma, in its various forms. In this paper, we prove a non-commutative Mañé Lemma, suited to the problem of maximization of Lyapunov exponents of linear cocycles or, more generally, vector bundle automorphisms. More precisely, we provide conditions that ensure the existence of an extremal norm, that is, a Finsler norm with respect to which no vector can be expanded in a single iterate by a factor bigger than the maximal asymptotic expansion rate. These conditions are essentially irreducibility and sufficiently strong fiber-bunching. Therefore we extend the classic concept of Barabanov norm, which is used in the study of the joint spectral radius. We obtain several consequences, including sufficient conditions for the existence of Lyapunov maximizing sets.

En optimisation ergodique traditionnelle, on cherche à maximiser des moyennes de Birkhoff. L’outil le plus utile dans ce domaine est le célèbre lemme de Mañé, sous ses diverses formes. Dans cet article, nous montrons un lemme de Mañé non commutatif, adapté au problème de la maximisation des exposants de Lyapunov de cocycles linéaires ou, plus généralement, des automorphismes de fibrés vectoriels. Plus précisément, nous fournissons des conditions qui garantissent l’existence d’une norme extrémale, c’est-à-dire une norme de Finsler pour laquelle aucun vecteur ne peut être dilaté en une seule itération par un facteur plus grand que le taux de croissance asymptotique maximal. Ces conditions sont essentiellement l’irréductibilité et un resserrement des fibres suffisamment fort. Nous étendons donc le concept classique de norme de Barabanov, utilisé dans l’étude du rayon spectral joint. Nous obtenons plusieurs conséquences, notamment des conditions suffisantes pour l’existence des ensembles maximisants de Lyapunov.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.109
Classification: 37H15,  37D20,  37D30,  15A60,  93D30
Keywords: Linear cocycle, extremal norm, Lyapunov exponent, ergodic optimization, joint spectral radius
Bochi, Jairo 1; Garibaldi, Eduardo 2

1 Facultad de Matemáticas, Pontificia Universidad Católica de Chile Avda. Vicuña Mackenna 4860, Macul, Chile
2 IMECC, Unicamp Rua Sergio Buarque de Holanda, 651, Cidade Universitária - Barão Geraldo, 13083-859 Campinas - SP, Brazil
@article{JEP_2019__6__947_0,
     author = {Bochi, Jairo and Garibaldi, Eduardo},
     title = {Extremal norms for fiber-bunched cocycles},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques},
     pages = {947--1004},
     publisher = {Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.109},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.109/}
}
TY  - JOUR
AU  - Bochi, Jairo
AU  - Garibaldi, Eduardo
TI  - Extremal norms for fiber-bunched cocycles
JO  - Journal de l’École polytechnique - Mathématiques
PY  - 2019
DA  - 2019///
SP  - 947
EP  - 1004
VL  - 6
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.109/
UR  - https://doi.org/10.5802/jep.109
DO  - 10.5802/jep.109
LA  - en
ID  - JEP_2019__6__947_0
ER  - 
%0 Journal Article
%A Bochi, Jairo
%A Garibaldi, Eduardo
%T Extremal norms for fiber-bunched cocycles
%J Journal de l’École polytechnique - Mathématiques
%D 2019
%P 947-1004
%V 6
%I Ecole polytechnique
%U https://doi.org/10.5802/jep.109
%R 10.5802/jep.109
%G en
%F JEP_2019__6__947_0
Bochi, Jairo; Garibaldi, Eduardo. Extremal norms for fiber-bunched cocycles. Journal de l’École polytechnique - Mathématiques, Volume 6 (2019), pp. 947-1004. doi : 10.5802/jep.109. http://www.numdam.org/articles/10.5802/jep.109/

[1] Akin, Ethan The general topology of dynamical systems, Graduate Studies in Math., 1, American Mathematical Society, Providence, RI, 1993 | MR | Zbl

[2] Alekseev, V. M.; Yakobson, M. V. Symbolic dynamics and hyperbolic dynamic systems, Phys. Rep., Volume 75 (1981) no. 5, pp. 287-325 | DOI | MR

[3] Anosov, D. V. Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Dokl. Akad. Nauk SSSR, Volume 145 (1962), pp. 707-709 | MR | Zbl

[4] Aoki, N.; Hiraide, K. Topological theory of dynamical systems. Recent advances, North-Holland Math. Library, 52, North-Holland Publishing Co., Amsterdam, 1994 | Zbl

[5] Arnold, Ludwig Random dynamical systems, Springer Monographs in Math., Springer-Verlag, Berlin, 1998 | DOI | Zbl

[6] Avila, Artur; Bochi, Jairo A uniform dichotomy for generic SL(2,) cocycles over a minimal base, Bull. Soc. math. France, Volume 135 (2007) no. 3, pp. 407-417 | DOI | MR | Zbl

[7] Avila, Artur; Viana, Marcelo Simplicity of Lyapunov spectra: a sufficient criterion, Portugal. Math., Volume 64 (2007) no. 3, pp. 311-376 | DOI | MR | Zbl

[8] Avila, Artur; Viana, Marcelo Extremal Lyapunov exponents: an invariance principle and applications, Invent. Math., Volume 181 (2010) no. 1, pp. 115-189 | DOI | MR | Zbl

[9] Ball, Keith An elementary introduction to modern convex geometry, Flavors of geometry (Math. Sci. Res. Inst. Publ.), Volume 31, Cambridge Univ. Press, Cambridge, 1997, pp. 1-58 http://library.msri.org/books/Book31/files/ball.pdf | MR | Zbl

[10] Barabanov, N. E. On the Lyapunov exponent of discrete inclusions. I, Avtomat. i Telemekh. (1988) no. 2, pp. 40-46 | MR | Zbl

[11] Berger, Marc A.; Wang, Yang Bounded semigroups of matrices, Linear Algebra Appl., Volume 166 (1992), pp. 21-27 | DOI | MR | Zbl

[12] Blondel, Vincent D.; Tsitsiklis, John N. The boundedness of all products of a pair of matrices is undecidable, Systems Control Lett., Volume 41 (2000) no. 2, pp. 135-140 | DOI | MR | Zbl

[13] Bochi, Jairo The multiplicative ergodic theorem of Oseledets, 2008 (Note available at http://www.mat.uc.cl/~jairo.bochi/docs/oseledets.pdf)

[14] Bochi, Jairo Ergodic optimization of Birkhoff averages and Lyapunov exponents, Proc. Int. Cong. of Math. (Rio de Janeiro, 2018), Vol. 2, World Scientific, 2019, pp. 1821-1842

[15] Bochi, Jairo; Gourmelon, Nicolas Some characterizations of domination, Math. Z., Volume 263 (2009) no. 1, pp. 221-231 | DOI | MR | Zbl

[16] Bochi, Jairo; Morris, Ian D. Continuity properties of the lower spectral radius, Proc. London Math. Soc. (3), Volume 110 (2015) no. 2, pp. 477-509 | DOI | MR | Zbl

[17] Bochi, Jairo; Potrie, Rafael; Sambarino, Andrés Anosov representations and dominated splittings, J. Eur. Math. Soc. (JEMS), Volume 21 (2019) no. 11, pp. 3343-3414 | DOI | MR

[18] Bochi, Jairo; Rams, Michał The entropy of Lyapunov-optimizing measures of some matrix cocycles, J. Modern Dyn., Volume 10 (2016), pp. 255-286 | DOI | MR | Zbl

[19] Bonatti, C.; Viana, M. Lyapunov exponents with multiplicity 1 for deterministic products of matrices, Ergodic Theory Dynam. Systems, Volume 24 (2004) no. 5, pp. 1295-1330 | DOI | MR | Zbl

[20] Bonatti, Christian; Díaz, Lorenzo J.; Viana, Marcelo Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. Mathematical Physics, III, Encyclopaedia of Math. Sciences, 102, Springer-Verlag, Berlin, 2005 | Zbl

[21] Bonatti, Christian; Gómez-Mont, Xavier; Viana, Marcelo Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003) no. 4, pp. 579-624 | DOI | Zbl

[22] Bousch, Thierry La condition de Walters, Ann. Sci. École Norm. Sup. (4), Volume 34 (2001) no. 2, pp. 287-311 | DOI | MR | Zbl

[23] Bousch, Thierry Le lemme de Mañé-Conze-Guivarc’h pour les systèmes amphidynamiques rectifiables, Ann. Fac. Sci. Toulouse Math. (6), Volume 20 (2011) no. 1, pp. 1-14 http://afst.cedram.org/item?id=AFST_2011_6_20_1_1_0 | DOI | MR | Zbl

[24] Bousch, Thierry; Jenkinson, Oliver Cohomology classes of dynamically non-negative C k functions, Invent. Math., Volume 148 (2002) no. 1, pp. 207-217 | DOI | MR | Zbl

[25] Bousch, Thierry; Mairesse, Jean Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture, J. Amer. Math. Soc., Volume 15 (2002) no. 1, pp. 77-111 | DOI | MR | Zbl

[26] Bowen, Rufus Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., Volume 154 (1971), pp. 377-397 | DOI | MR | Zbl

[27] Bressaud, Xavier; Quas, Anthony Rate of approximation of minimizing measures, Nonlinearity, Volume 20 (2007) no. 4, pp. 845-853 | DOI | MR | Zbl

[28] Breuillard, Emmanuel; Fujiwara, Koji On the joint spectral radius for isometries of non-positively curved spaces and uniform growth, 2018 | arXiv

[29] Brin, M. I.; Pesin, Ja. B. Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., Volume 38 (1974), pp. 170-212 | MR | Zbl

[30] Cicone, Antonio; Guglielmi, Nicola; Protasov, Vladimir Yu. Linear switched dynamical systems on graphs, Nonlinear Anal. Hybrid Syst., Volume 29 (2018), pp. 165-186 | DOI | MR | Zbl

[31] Colonius, Fritz; Kliemann, Wolfgang The dynamics of control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000 | DOI | Zbl

[32] Contreras, Gonzalo Ground states are generically a periodic orbit, Invent. Math., Volume 205 (2016) no. 2, pp. 383-412 | DOI | MR | Zbl

[33] Contreras, Gonzalo; Lopes, A. O.; Thieullen, Ph. Lyapunov minimizing measures for expanding maps of the circle, Ergodic Theory Dynam. Systems, Volume 21 (2001) no. 5, pp. 1379-1409 | DOI | MR | Zbl

[34] Conze, J.P.; Guivarc’h, Y. Croissance des sommes ergodiques et principe variationnel, circa 1993 (Unpublished manuscript)

[35] Coronel, Daniel; Navas, Andrés; Ponce, Mario On bounded cocycles of isometries over minimal dynamics, J. Modern Dyn., Volume 7 (2013) no. 1, pp. 45-74 | DOI | MR | Zbl

[36] Crovisier, S.; Potrie, R. Introduction to partially hyperbolic dynamics, 2015 (Notes ICTP)

[37] Garibaldi, Eduardo Ergodic optimization in the expanding case. Concepts, tools and applications, SpringerBriefs in Math., Springer, Cham, 2017 | DOI | Zbl

[38] Garibaldi, Eduardo; Gomes, João Tiago Assunção Aubry set for asymptotically sub-additive potentials, Stochastic Dyn., Volume 16 (2016) no. 2, 1660009, 13 pages | DOI | MR | Zbl

[39] Gourmelon, Nikolaz Adapted metrics for dominated splittings, Ergodic Theory Dynam. Systems, Volume 27 (2007) no. 6, pp. 1839-1849 | DOI | MR | Zbl

[40] Herman, Michael-R. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2, Comment. Math. Helv., Volume 58 (1983) no. 3, pp. 453-502 | DOI | MR | Zbl

[41] Hirsch, M. W.; Pugh, C. C.; Shub, M. Invariant manifolds, Lect. Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977 | Zbl

[42] Jenkinson, Oliver Ergodic optimization, Discrete Contin. Dynam. Systems, Volume 15 (2006) no. 1, pp. 197-224 | DOI | MR | Zbl

[43] Jenkinson, Oliver Ergodic optimization in dynamical systems, Ergodic Theory Dynam. Systems, Volume 39 (2019) no. 10, pp. 2593-2618 | DOI | MR | Zbl

[44] Jungers, Raphaël The joint spectral radius. Theory and applications, Lect. Notes in Control and Information Sci., 385, Springer-Verlag, Berlin, 2009 | DOI | MR

[45] Kalinin, Boris Livšic theorem for matrix cocycles, Ann. of Math. (2), Volume 173 (2011) no. 2, pp. 1025-1042 | DOI | MR | Zbl

[46] Kalinin, Boris; Sadovskaya, Victoria Cocycles with one exponent over partially hyperbolic systems, Geom. Dedicata, Volume 167 (2013), pp. 167-188 | DOI | MR | Zbl

[47] Katok, Anatole; Hasselblatt, Boris Introduction to the modern theory of dynamical systems, Encyclopedia of Math. and its Appl., 54, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[48] Katznelson, Yitzhak An introduction to harmonic analysis, Dover Publications, Inc., New York, 1976 | Zbl

[49] Kozyakin, Victor An explicit Lipschitz constant for the joint spectral radius, Linear Algebra Appl., Volume 433 (2010) no. 1, pp. 12-18 | DOI | MR | Zbl

[50] Krengel, Ulrich Ergodic theorems, De Gruyter Studies in Math., 6, Walter de Gruyter & Co., Berlin, 1985 | DOI | MR | Zbl

[51] Lopes, Artur O.; Thieullen, Philippe Sub-actions for Anosov diffeomorphisms, Geometric methods in dynamics. II (Astérisque), Volume 287, Société Mathématique de France, Paris, 2003, pp. 135-146 | Zbl

[52] Mather, John N. Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., Volume 207 (1991) no. 2, pp. 169-207 | DOI | MR | Zbl

[53] Morris, I. D. A sufficient condition for the subordination principle in ergodic optimization, Bull. London Math. Soc., Volume 39 (2007) no. 2, pp. 214-220 | DOI | MR | Zbl

[54] Morris, Ian D. A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory, Adv. Math., Volume 225 (2010) no. 6, pp. 3425-3445 | DOI | MR | Zbl

[55] Morris, Ian D. Mather sets for sequences of matrices and applications to the study of joint spectral radii, Proc. London Math. Soc. (3), Volume 107 (2013) no. 1, pp. 121-150 | DOI | MR | Zbl

[56] Oregón-Reyes, Eduardo A new inequality about matrix products and a Berger-Wang formula, 2017 | arXiv

[57] Pesin, Yakov B. Lectures on partial hyperbolicity and stable ergodicity, Zurich Lectures in Advanced Math., European Mathematical Society, Zürich, 2004 | DOI | MR | Zbl

[58] Philippe, Matthew; Essick, Ray; Dullerud, Geir E.; Jungers, Raphaël M. Stability of discrete-time switching systems with constrained switching sequences, Automatica J. IFAC, Volume 72 (2016), pp. 242-250 | DOI | MR | Zbl

[59] Pinto, A. A.; Rand, D. A. Smoothness of holonomies for codimension 1 hyperbolic dynamics, Bull. London Math. Soc., Volume 34 (2002) no. 3, pp. 341-352 | DOI | MR | Zbl

[60] Pugh, Charles; Shub, Michael; Wilkinson, Amie Hölder foliations, Duke Math. J., Volume 86 (1997) no. 3, pp. 517-546 | DOI | Zbl

[61] Pugh, Charles; Shub, Michael; Wilkinson, Amie Hölder foliations, revisited, J. Modern Dyn., Volume 6 (2012) no. 1, pp. 79-120 | DOI | Zbl

[62] Pugh, Charles C. On arbitrary sequences of isomorphisms in R m R m , Trans. Amer. Math. Soc., Volume 184 (1973), pp. 387-400 | DOI | MR

[63] Qiu, Li; Zhang, Yanxia; Li, Chi-Kwong Unitarily invariant metrics on the Grassmann space, SIAM J. Matrix Anal. Appl., Volume 27 (2005) no. 2, pp. 507-531 | DOI | MR | Zbl

[64] Rota, Gian-Carlo; Strang, Gilbert A note on the joint spectral radius, Nederl. Akad. Wetensch. Indag. Math., Volume 22 (1960), pp. 379-381 | DOI | MR | Zbl

[65] Ruelle, David Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics, Encyclopedia of Math. and its Appl., 5, Addison-Wesley Publishing Co., Reading, Mass., 1978 | Zbl

[66] Sakai, Kazuhiro Shadowing properties of -hyperbolic homeomorphisms, Topology Appl., Volume 112 (2001) no. 3, pp. 229-243 | DOI | MR | Zbl

[67] Savchenko, S. V. Homological inequalities for finite topological Markov chains, Funkcional. Anal. i Priložen., Volume 33 (1999) no. 3, pp. 91-93 | DOI | MR | Zbl

[68] Schmeling, J.; Siegmund-Schultze, Ra. Hölder continuity of the holonomy maps for hyperbolic basic sets. I, Ergodic theory and related topics, III (Güstrow, 1990) (Lect. Notes in Math.), Volume 1514, Springer, Berlin, 1992, pp. 174-191 | DOI | Zbl

[69] Sigmund, Karl On minimal centers of attraction and generic points, J. reine angew. Math., Volume 295 (1977), pp. 72-79 | DOI | MR | Zbl

[70] Smale, S. Differentiable dynamical systems, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 747-817 | DOI | MR | Zbl

[71] Stewart, G. W. Matrix algorithms. Vol. I. Basic decompositions, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1998 | DOI | Zbl

[72] Viana, Marcelo Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Ann. of Math. (2), Volume 167 (2008) no. 2, pp. 643-680 | DOI | MR | Zbl

[73] Walters, Peter An introduction to ergodic theory, Graduate Texts in Math., 79, Springer-Verlag, New York-Berlin, 1982 | MR | Zbl

[74] Wirth, Fabian The generalized spectral radius and extremal norms, Linear Algebra Appl., Volume 342 (2002), pp. 17-40 | DOI | MR | Zbl

Cited by Sources: