Commensurating actions of birational groups and groups of pseudo-automorphisms
Journal de l’École polytechnique - Mathématiques, Volume 6 (2019), pp. 767-809.

Pseudo-automorphisms are birational transformations acting as regular automorphisms in codimension 1. We import ideas from geometric group theory to prove that a group of birational transformations that satisfies a fixed point property on cat(0) cubical complexes, for example a discrete group with Kazhdan Property (T), is birationally conjugate to a group acting by pseudo-automorphisms on some non-empty Zariski-open subset. We apply this argument to classify groups of birational transformations of surfaces with this fixed point property up to birational conjugacy.

Les pseudo-automorphismes sont les transformations birationnelles qui sont régulières en codimension 1. On emploie des idées de théorie géométrique des groupes pour obtenir qu’un groupe de transformations birationnelles satisfaisant une propriété de point fixe sur les complexes cubiques CAT(0), par exemple un groupe ayant la propriété (T) de Kazhdan, est birationnellement conjugué à un groupe agissant par pseudo-automorphismes sur un ouvert de Zariski non vide. On utilise cet argument pour classifier, modulo conjugaison birationnelle, les groupes de transformations birationnelles de surfaces avec cette propriété de point fixe.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.106
Classification: 14E07,  14J50,  20F65
Keywords: Cremona group, birational group, commensurating action, algebraic surfaces, regularization
Cantat, Serge 1; de Cornulier, Yves 2

1 IRMAR (UMR 6625 du CNRS), Université de Rennes 1 Campus de Beaulieu, 35042 Rennes Cedex, France
2 CNRS and Univ Lyon, Univ Claude Bernard Lyon 1, Institut Camille Jordan 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne, France
@article{JEP_2019__6__767_0,
     author = {Cantat, Serge and de Cornulier, Yves},
     title = {Commensurating actions of birational groups and groups of pseudo-automorphisms},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques},
     pages = {767--809},
     publisher = {Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.106},
     zbl = {07114038},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.106/}
}
TY  - JOUR
AU  - Cantat, Serge
AU  - de Cornulier, Yves
TI  - Commensurating actions of birational groups and groups of pseudo-automorphisms
JO  - Journal de l’École polytechnique - Mathématiques
PY  - 2019
DA  - 2019///
SP  - 767
EP  - 809
VL  - 6
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.106/
UR  - https://zbmath.org/?q=an%3A07114038
UR  - https://doi.org/10.5802/jep.106
DO  - 10.5802/jep.106
LA  - en
ID  - JEP_2019__6__767_0
ER  - 
%0 Journal Article
%A Cantat, Serge
%A de Cornulier, Yves
%T Commensurating actions of birational groups and groups of pseudo-automorphisms
%J Journal de l’École polytechnique - Mathématiques
%D 2019
%P 767-809
%V 6
%I Ecole polytechnique
%U https://doi.org/10.5802/jep.106
%R 10.5802/jep.106
%G en
%F JEP_2019__6__767_0
Cantat, Serge; de Cornulier, Yves. Commensurating actions of birational groups and groups of pseudo-automorphisms. Journal de l’École polytechnique - Mathématiques, Volume 6 (2019), pp. 767-809. doi : 10.5802/jep.106. http://www.numdam.org/articles/10.5802/jep.106/

[1] Bădescu, Lucian Algebraic surfaces, Universitext, Springer-Verlag, New York, 2001 | DOI | Zbl

[2] Barth, Wolf P.; Hulek, Klaus; Peters, Chris A. M.; Van de Ven, Antonius Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, Berlin, 2004 | MR | Zbl

[3] Bass, Hyman Groups of integral representation type, Pacific J. Math., Volume 86 (1980) no. 1, pp. 15-51 http://projecteuclid.org/euclid.pjm/1102780613 | DOI | MR | Zbl

[4] Bass, Hyman Finitely generated subgroups of GL 2 , The Smith conjecture (New York, 1979) (Pure Appl. Math.), Volume 112, Academic Press, Orlando, FL, 1984, pp. 127-136 | DOI | MR

[5] Bass, Hyman; Lubotzky, Alexander Automorphisms of groups and of schemes of finite type, Israel J. Math., Volume 44 (1983) no. 1, pp. 1-22 | DOI | MR | Zbl

[6] Beauville, Arnaud Surfaces algébriques complexes, Astérisque, 54, Société Mathématique de France, Paris, 1978 | Zbl

[7] Bedford, Eric; Kim, Kyounghee Dynamics of (pseudo) automorphisms of 3-space: periodicity versus positive entropy, Publ. Mat., Volume 58 (2014) no. 1, pp. 65-119 http://projecteuclid.org/euclid.pm/1387570391 | DOI | MR | Zbl

[8] Bergeron, Nicolas; Haglund, Frédéric; Wise, Daniel T. Hyperplane sections in arithmetic hyperbolic manifolds, J. London Math. Soc. (2), Volume 83 (2011) no. 2, pp. 431-448 | DOI | MR | Zbl

[9] Bergeron, Nicolas; Wise, Daniel T. A boundary criterion for cubulation, Amer. J. Math., Volume 134 (2012) no. 3, pp. 843-859 | DOI | MR | Zbl

[10] Cantat, Serge Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2), Volume 174 (2011) no. 1, pp. 299-340 | DOI | MR | Zbl

[11] Cantat, Serge Dynamics of automorphisms of compact complex surfaces, Frontiers in Complex Dynamics: In celebration of John Milnor’s 80th birthday (Princeton Math. Series), Volume 51, Princeton University Press, Princeton, NJ, 2014, pp. 463-514 | DOI | MR | Zbl

[12] Cantat, Serge; Oguiso, Keiji Birational automorphism groups and the movable cone theorem for Calabi-Yau manifolds of Wehler type via universal Coxeter groups, Amer. J. Math., Volume 137 (2015) no. 4, pp. 1013-1044 | DOI | MR | Zbl

[13] Cornulier, Yves Irreducible lattices, invariant means, and commensurating actions, Math. Z., Volume 279 (2015) no. 1-2, pp. 1-26 | DOI | MR | Zbl

[14] Cornulier, Yves Group actions with commensurated subsets, wallings and cubings, 2016 | arXiv

[15] Dang, Nguyen-Bac Dynamique à l’infini sur des cubiques de 3 (C), Master 2 Thesis, École Polytechnique, Palaiseau (2015)

[16] Diller, Jeffrey; Favre, Charles Dynamics of bimeromorphic maps of surfaces, Amer. J. Math., Volume 123 (2001) no. 6, pp. 1135-1169 http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/123.6diller.pdf | DOI | MR | Zbl

[17] Diller, Jeffrey; Jackson, Daniel; Sommese, Andrew Invariant curves for birational surface maps, Trans. Amer. Math. Soc., Volume 359 (2007) no. 6, pp. 2793-2991 | DOI | MR | Zbl

[18] Farley, Daniel S. Proper isometric actions of Thompson’s groups on Hilbert space, Internat. Math. Res. Notices (2003) no. 45, pp. 2409-2414 | DOI | MR | Zbl

[19] Fryers, Michael J. The movable fan of the Horrocks-Mumford quintic, 2001 (unpublished manuscript) | arXiv

[20] Gizatullin, Marat H. Invariants of incomplete algebraic surfaces that can be obtained by means of completions, Izv. Akad. Nauk SSSR Ser. Mat., Volume 35 (1971), pp. 485-497 | MR | Zbl

[21] Gizatullin, Marat H.; Danilov, Vladimir I. Automorphisms of affine surfaces. I, Izv. Akad. Nauk SSSR Ser. Mat., Volume 39 (1975) no. 3, p. 523-565, 703 | MR

[22] Gizatullin, Marat H.; Danilov, Vladimir I. Automorphisms of affine surfaces. II, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977) no. 1, p. 54-103, 231 | MR | Zbl

[23] Grothendieck, Alexander Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Société Mathématique de France, Paris, 1995 (Exp. No. 221, 249–276) | Zbl

[24] de la Harpe, Pierre; Valette, Alain La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque, Société Mathématique de France, Paris, 1989 no. 175, 158 pages | Zbl

[25] Hartshorne, Robin Algebraic geometry, Graduate Texts in Math., 52, Springer-Verlag, New York, 1977 | Zbl

[26] Hubbard, John H.; Papadopol, Peter Newton’s method applied to two quadratic equations in 2 viewed as a global dynamical system, Mem. Amer. Math. Soc., 191, no.  891, American Mathematical Society, Providence, RI, 2008 | DOI | Zbl

[27] Hughes, Bruce Local similarities and the Haagerup property. With an appendix by Daniel S. Farley, Groups Geom. Dyn., Volume 3 (2009) no. 2, pp. 299-315 | DOI | MR | Zbl

[28] Iitaka, Shigeru Algebraic geometry: an introduction to the birational geometry of algebraic varieties, Graduate Texts in Math., 76, Springer-Verlag, New York-Berlin, 1982 | MR | Zbl

[29] Kollár, János; Smith, Karen E.; Corti, Alessio Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, 92, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[30] Lazarsfeld, Robert Positivity in algebraic geometry. I, Ergeb. Math. Grenzgeb. (3), 48, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[31] Lieberman, David I. Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977) (Lect. Notes in Math.), Volume 670, Springer, Berlin, 1978, pp. 140-186 | MR | Zbl

[32] Liedtke, Christian Algebraic surfaces in positive characteristic, Birational geometry, rational curves, and arithmetic (Simons Symp.), Springer, Cham, 2013, pp. 229-292 | DOI | MR | Zbl

[33] Lubotzky, Alexander; Mozes, Shahar; Raghunathan, M. S. The word and Riemannian metrics on lattices of semisimple groups, Publ. Math. Inst. Hautes Études Sci. (2000) no. 91, pp. 5-53 | DOI | MR | Zbl

[34] Lubotzky, Alexander; Mozes, Shahar; Raghunathan, MS Cyclic subgroups of exponential growth and metrics on discrete groups, C. R. Acad. Sci. Paris Sér. I Math., Volume 317 (1993), pp. 735-740 | MR | Zbl

[35] Matsusaka, Teruhisa Polarized varieties, fields of moduli and generalized Kummer varieties of polarized abelian varieties, Amer. J. Math., Volume 80 (1958), pp. 45-82 | DOI | MR | Zbl

[36] Matsusaka, Teruhisa; Mumford, David Two fundamental theorems on deformations of polarized varieties, Amer. J. Math., Volume 86 (1964), pp. 668-684 | DOI | MR | Zbl

[37] Milne, James S. Algebraic Geometry, 2017 (http://www.jmilne.org/math/CourseNotes/AG.pdf)

[39] Serre, Jean-Pierre Arbres, amalgames, SL 2 , Astérisque, 46, Société Mathématique de France, Paris, 1977 | MR | Zbl

[40] Vaquié, Michel Valuations, Resolution of singularities (Obergurgl, 1997) (Progress in Math.), Volume 181, Birkhäuser, Basel, 2000, pp. 539-590 | DOI | MR | Zbl

[41] Zariski, Oscar; Samuel, Pierre Commutative algebra. Vol. II, Graduate Texts in Math., 29, Springer-Verlag, New York-Heidelberg, 1975 | MR | Zbl

Cited by Sources: