Evolution by the vortex filament equation of curves with a corner
Journées équations aux dérivées partielles (2013), article no. 1, 18 p.

In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in 3 and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations of self-similar solutions up to a singularity formation in finite time, and beyond this time. We shall give a sketch of the proof. These results were obtained in collaboration with Luis Vega.

Dans cet article de comptes rendus on présente une série de résultats sur la stabilité des solutions auto-similaires de l’équation du tourbillon filamentaire. Cette équation décrit un flot de courbes de 3 et est utilisée comme modèle pour l’évolution d’un tourbillon filamentaire dans un fluide. Le théorème principal donne, sous des hypothèses appropriées, l’existence et la description des solution engendrées par des courbes à un coin, sur temps positifs et négatifs. Le théorème compagnon décrit l’évolution des perturbations des solutions auto-similaires jusque’à formation d’une singularité en temps fini, et au-delà de ce temps. On va donner une esquisse des preuves. Ces résultats on été obtenus en collaboration avec Luis Vega.

DOI: 10.5802/jedp.97
Classification: 76B47, 35Q35, 35Q55, 35B35, 35P25
Keywords: Vortex filaments, selfsimilar solutions, Schrödinger equations, scattering
Banica, Valeria 1

1 Laboratoire Analyse et probabilités (EA 2172), Déptartement de Mathématiques, Université d’Évry, 23 Bd. de France, 91037 Évry, France
@article{JEDP_2013____A1_0,
     author = {Banica, Valeria},
     title = {Evolution by the vortex filament equation of curves with a corner},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {1},
     pages = {1--18},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2013},
     doi = {10.5802/jedp.97},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.97/}
}
TY  - JOUR
AU  - Banica, Valeria
TI  - Evolution by the vortex filament equation of curves with a corner
JO  - Journées équations aux dérivées partielles
PY  - 2013
SP  - 1
EP  - 18
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.97/
DO  - 10.5802/jedp.97
LA  - en
ID  - JEDP_2013____A1_0
ER  - 
%0 Journal Article
%A Banica, Valeria
%T Evolution by the vortex filament equation of curves with a corner
%J Journées équations aux dérivées partielles
%D 2013
%P 1-18
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.97/
%R 10.5802/jedp.97
%G en
%F JEDP_2013____A1_0
Banica, Valeria. Evolution by the vortex filament equation of curves with a corner. Journées équations aux dérivées partielles (2013), article  no. 1, 18 p. doi : 10.5802/jedp.97. http://www.numdam.org/articles/10.5802/jedp.97/

[1] R.J. Arms and F.R. Hama, Localized-induction concept on a curved vortex and motion of an elliptic vortex ring, Phys. Fluids, (1965), 553.

[2] V. Banica and L. Vega, On the stability of a singular vortex dynamics, Comm. Math. Phys. 286 (2009), 593–627. | MR | Zbl

[3] V. Banica and L. Vega, Scattering for 1D cubic NLS and singular vortex dynamics, J. Eur. Math. Soc. 14 (2012), 209–253. | MR

[4] V. Banica and L. Vega, Stability of the self-similar dynamics of a vortex filament, to appear in Arch. Ration. Mech. Anal. | MR

[5] V. Banica and L. Vega, The initial value problem for the binormal flow with rough data, ArXiv:1304.0996.

[6] J  Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107–156. | MR | Zbl

[7] T. F. Buttke, A numerical study of superfluid turbulence in the Self Induction Approximation, J. of Compt. Physics 76 (1988), 301–326 | Zbl

[8] A. Calini and T. Ivey, Stability of Small-amplitude Torus Knot Solutions of the Localized Induction Approximation, J. Phys. A: Math. Theor. 44 (2011) 335204. | MR | Zbl

[9] R. Carles, Geometric Optics and Long Range Scattering for One-Dimensional Nonlinear Schrödinger Equations, Comm. Math. Phys. 220 (2001), 41–67. | MR | Zbl

[10] T. Cazenave and F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation, Non. Anal. TMA 14 (1990), 807–836. | MR | Zbl

[11] M. Christ, J. Colliander, and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, ArXiv:0311048.

[12] L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo 22 (1906), 117.

[13] P. Germain, N. Masmoudi and J. Shatah, Global solutions for 2D quadratic Schrödinger equations, J. Math. Pures Appl. 97(2012), 505–543. | MR | Zbl

[14] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. II Scattering theory, general case, J. Funct. Anal. 32 (1979), 33–71. | MR | Zbl

[15] A. Grünrock, Bi- and trilinear Schr?dinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not. 41 (2005), 2525–2558. | MR | Zbl

[16] S. Gustafson, K. Nakanishi, T.-P. Tsai, Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré 8 (2007), no. 7, 1303–1331. | MR

[17] S. Gutiérrez, J. Rivas and L. Vega, Formation of singularities and self-similar vortex motion under the localized induction approximation, Comm. Part. Diff. Eq. 28 (2003), 927–968. | MR | Zbl

[18] H. Hasimoto, A soliton in a vortex filament, J. Fluid Mech. 51 (1972), 477–485. | Zbl

[19] N. Hayashi and P. Naumkin, Domain and range of the modified wave operator for Schr?odinger equations with critical nonlinearity, Comm. Math. Phys. 267 (2006), 477–492. | MR | Zbl

[20] E.J. Hopfinger, F.K. Browand, Vortex solitary waves in a rotating, turbulent flow, Nature 295, (1981), 393–395.

[21] F. de la Hoz, C. García-Cervera and L. Vega, A numerical study of the self-similar solutions of the Schrödinger Map, SIAM J. Appl. Math. 70 (2009), 1047–1077. | MR | Zbl

[22] R. L. Jerrard and D. Smets, On Schrödinger maps from T 1 to S 2 , arXiv:1105.2736.

[23] R. L. Jerrard and D. Smets, On the motion of a curve by its binormal curvature, arXiv:1109.5483.

[24] C. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical non-linear dispersive equations, Duke Math. J. 106 (2001) 716–633. | MR | Zbl

[25] N. Koiso, Vortex filament equation and semilinear Schrödinger equation, Nonlinear Waves, Hokkaido University Technical Report Series in Mathematics 43 (1996) 221–226. | Zbl

[26] S. Lafortune, Stability of solitons on vortex filaments, Phys. Lett. A bf 377 (2013), 766–769. | MR

[27] M. Lakshmanan and M. Daniel, On the evolution of higher dimensional Heisenberg continuum spin systems, Physica A (1981), 107, 533–552. | MR

[28] M. Lakshmanan, T. W. Ruijgrok and C. J. Thompson, On the the dynamics of a continuum spin system, Physica A (1976), 84, 577–590. | MR

[29] T. Levi-Civita, Attrazione Newtoniana dei Tubi Sottili e Vortici Filiformi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (1932), 229–250 | Numdam | Zbl

[30] T. Lipniacki, Quasi-static solutions for quantum vortex motion under the localized induction approximation, J. Fluid Mech. 477 (2002), 321–337. | MR | Zbl

[31] F. Maggioni, S. Z. Alamri, C. F. Barenghi, and R. L. Ricca, Velocity, energy and helicity of vortex knots and unknots, Phys. Rev. E 82 (2010), 26309–26317. | MR

[32] A. Majda and A.  Bertozzi, Vorticity and incompressible flow., Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002. | MR | Zbl

[33] K. Moriyama, S. Tonegawa and Y.  Tsutsumi, Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math. 5 (2003), 983–996 . | MR | Zbl

[34] T. Nishiyama and A. Tani, Solvability of the localized induction equation for vortex motion, Comm. Math. Phys. 162 (1994), 433?-445. | MR | Zbl

[35] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), 479–493. | MR | Zbl

[36] C. S. Peskin and D. M. McQueen, Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets, Am. J. Physiol. 266 (Heart Circ. Physiol. 35) (1994), H319–H328.

[37] R. L. Ricca, The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics, Fluid Dynam. Res. 18 (1996), 245–268. | MR | Zbl

[38] R.L. Ricca, Rediscovery of Da Rios equations, Nature 352 (1991), 561–562.

[39] K.W. Schwarz, Three-dimensional vortex dynamics in superfluid 4 He: Line-line and line-boundary interactions, Phys. Rev B 31 (1985), 5782–5804.

[40] A. Shimomura and S. Tonegawa, Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions, Differ. Integral Equ. 17 (2004), 127–150. | MR | Zbl

[41] A. Tani and T. Nishiyama, Solvability of equations for motion of a vortex filament with or without axial flow, Publ. Res. Inst. Math. Sci. 33 (1997), 509?-526. | MR | Zbl

[42] A. Vargas and L. Vega, Global well-posedness for 1d non-linear Schrodinger equation for data with an infinite L 2 norm, J. Math. Pures Appl. 80 (2001), 1029–1044. | MR | Zbl

[43] E.J. Vigmond, C. Clements, D.M. McQueen and C.S. Peskin, Effect of bundle branch block on cardiac output: A whole heart simulation study, Prog. Biophys. Mol. Biol. 97 (2008), 520–42.

Cited by Sources: