@article{JEDP_2007____A1_0, author = {Kenig, Carlos E.}, title = {Lecture notes : {Global} {Well-posedness,} scattering and blow up for the energy-critical, focusing, non-linear {Schr\"odinger} and wave equations}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {1}, pages = {1--35}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2007}, doi = {10.5802/jedp.40}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.40/} }
TY - JOUR AU - Kenig, Carlos E. TI - Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations JO - Journées équations aux dérivées partielles PY - 2007 SP - 1 EP - 35 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.40/ DO - 10.5802/jedp.40 LA - en ID - JEDP_2007____A1_0 ER -
%0 Journal Article %A Kenig, Carlos E. %T Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations %J Journées équations aux dérivées partielles %D 2007 %P 1-35 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.40/ %R 10.5802/jedp.40 %G en %F JEDP_2007____A1_0
Kenig, Carlos E. Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations. Journées équations aux dérivées partielles (2007), article no. 1, 35 p. doi : 10.5802/jedp.40. http://www.numdam.org/articles/10.5802/jedp.40/
[1] High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Mathematics, Volume 121 (1999), pp. 131-175 | MR | Zbl
[2] Decay estimates for the critical semilinear wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 15 (1998) no. 6, pp. 783-789 | Numdam | MR | Zbl
[3] Global wellposedness of defocusing critical nonlinear Schrödinger equations in the radial case, J. Amer. Math. Soc., Volume 12 (1999), pp. 145-171 | MR | Zbl
[4] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Analysis, Theory, Methods and Applications (1990), pp. 807-836 | MR | Zbl
[5] Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in , Ann. of Math. (2), Volume 167 (2008) no. 3, pp. 767-865 | MR | Zbl
[6] Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., Volume 2 (2005) no. 1, pp. 1-24 | MR | Zbl
[7] Inégalités de Sobolev précisées, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, École Polytech., Palaiseau, 1997, pp. Exp. No. IV, 11 | Numdam | MR | Zbl
[8] Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 845-884 | MR | Zbl
[9] The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., Volume 110 (1992) no. 1, pp. 96-130 | MR | Zbl
[10] Generalized Strichartz inequalities for the wave equation, Journal of Functional Analysis, Volume 1 (1995), pp. 50-68 | MR | Zbl
[11] On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., Volume 18 (1977) no. 9, pp. 1794-1797 | MR | Zbl
[12] Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2), Volume 132 (1990) no. 3, pp. 485-509 | MR | Zbl
[13] The Analysis of Linear Partial Differential Operators III, Grundlehren der mathematischen Wissenschaften, 274, Springer Verlag, 1985 | MR | Zbl
[14] Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett., Volume 1 (1994) no. 2, pp. 211-223 | MR | Zbl
[15] Endpoint Strichartz estimates, Amer. Jour. of Math. (1998), pp. 955-980 | MR | Zbl
[16] Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., Volume 166 (2006) no. 3, pp. 645-675 | MR | Zbl
[17] Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear wave equation, To appear, Acta Math. (2008) | MR | Zbl
[18] Scattering for the bounded solutions to the cubic defocusing NLS in dimensions, To appear, Trans. A.M.S. (2008) | MR
[19] Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., Volume 46 (1993) no. 4, pp. 527-620 | MR | Zbl
[20] On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, Volume 175 (2001) no. 2, pp. 353-392 | MR | Zbl
[21] Slow blow-up solutions for the critical focusing semi-linear wave equation in , arxiv:math.AP/0711.1818 (2007) | MR
[22] Instability and nonexistence of global solutions to nonlinear wave equations of the form , Trans. Amer. Math. Soc., Volume 192 (1974), pp. 1-21 | MR | Zbl
[23] Determination of the blow-up rate for a critical semilinear wave equation, Math. Ann., Volume 331 (2005) no. 2, pp. 395-416 | MR | Zbl
[24] Existence and stability of a solution blowing up on a sphere for an -supercritical nonlinear Schrödinger equation, Duke Math. J., Volume 134 (2006) no. 2, pp. 199-258 | MR | Zbl
[25] Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in , Amer. J. Math., Volume 129 (2007) no. 1, pp. 1-60 | MR | Zbl
[26] Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices (1994) no. 7, pp. 303ff., approx. 7 pp. (electronic) | MR | Zbl
[27] Geometric wave equations, Courant Lecture Notes in Mathematics, 2, New York University Courant Institute of Mathematical Sciences, New York, 1998 | MR | Zbl
[28] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705-714 | MR | Zbl
[29] Globally regular solutions to the Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 15 (1988) no. 3, p. 495-513 (1989) | EuDML | Numdam | MR | Zbl
[30] Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, New York J. Math., Volume 11 (2005), p. 57-80 (electronic) | EuDML | MR | Zbl
[31] Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3), Volume 22 (1968), pp. 265-274 | EuDML | Numdam | MR | Zbl
[32] Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., Volume 359 (2007) no. 5, p. 2123-2136 (electronic) | MR | Zbl
[33] The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., Volume 138 (2007) no. 2, pp. 281-374 | MR | Zbl
Cited by Sources: