High frequency limit of Helmholtz equations: the case of a discontinuous index
Journées équations aux dérivées partielles (2006), article no. 4, 19 p.

In this text, we compute the high frequency limit of the Hemholtz equation with source term, in the case of a refraction index that is discontinuous along a sharp interface between two unbounded media. The asymptotic propagation of energy is studied using Wigner measures.

DOI: 10.5802/jedp.31
Fouassier, Elise 1

1 UMPA, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 7, France et IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
@article{JEDP_2006____A4_0,
     author = {Fouassier, Elise},
     title = {High frequency limit of {Helmholtz} equations: the case of a~discontinuous index},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {4},
     pages = {1--19},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2006},
     doi = {10.5802/jedp.31},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.31/}
}
TY  - JOUR
AU  - Fouassier, Elise
TI  - High frequency limit of Helmholtz equations: the case of a discontinuous index
JO  - Journées équations aux dérivées partielles
PY  - 2006
SP  - 1
EP  - 19
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.31/
DO  - 10.5802/jedp.31
LA  - en
ID  - JEDP_2006____A4_0
ER  - 
%0 Journal Article
%A Fouassier, Elise
%T High frequency limit of Helmholtz equations: the case of a discontinuous index
%J Journées équations aux dérivées partielles
%D 2006
%P 1-19
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.31/
%R 10.5802/jedp.31
%G en
%F JEDP_2006____A4_0
Fouassier, Elise. High frequency limit of Helmholtz equations: the case of a discontinuous index. Journées équations aux dérivées partielles (2006), article  no. 4, 19 p. doi : 10.5802/jedp.31. http://www.numdam.org/articles/10.5802/jedp.31/

[1] S. Agmon, L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Analyse Math., 30 (1976), 1-38. | MR | Zbl

[2] J.D. Benamou, F.Castella, T. Katsaounis, B. Perthame, High frequency limit of the Helmholtz equation, Rev. Mat. Iberoamericana 18 (2002), no. 1, 187–209. | MR | Zbl

[3] F. Castella, B. Perthame, O. Runborg, High frequency limit of the Helmholtz equation. Source on a general manifold, Comm. P.D.E 3-4 (2002), 607-651. | MR | Zbl

[4] F. Castella, The radiation condition at infinity for the high frequency Helmholtz equation with source term: a wave packet approach, J. Funct. Anal. 223 (2005), no.1, 204-257. | MR | Zbl

[5] J. Dereziński, C. Gérard, Scattering theory of classical and quantum N-particle systems, Texts and Monographs in Physics, Springer, Berlin, 1997. | MR | Zbl

[6] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semiclassical limit, London Mathematical Society Lecture Notes Series, vol. 268, Cambridge University Press, Cambridge, 1999. | MR | Zbl

[7] E. Fouassier, Morrey-Campanato estimates for Helmholtz equations with two unbounded media, Proc. Roy. Soc. Edinburg Sect. A 135 (2005), no.4, 767-776. | MR | Zbl

[8] E. Fouassier, High frequency analysis of Helmholtz equations: refraction by sharp interfaces, to appear in Journal de Mathématiques Pures et APpliquées.

[9] P. Gérard, Mesures semi-classiques et ondes de Bloch, In Séminaire Equations aux dérivées partielles 1988-1989, exp XVI, Ecole Polytechnique, Palaiseau (1988). | Numdam | MR | Zbl

[10] P. Gérard, E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., 71 (1993), 559-607. | MR | Zbl

[11] P. Gérard, P.A. Markowitch, N.J. Mauser, F. Poupaud, Homogeneisation limits and Wigner transforms, Comm. pure and Appl. Math., 50 (1997), 321-357. | Zbl

[12] C. Gérard, A. Martinez, Principe d’absorption limite pour des opérateurs de Schrödingerà longue portée, C. R. Acad. Sci. Paris, Ser. I math, Vol 195, 3, 121-123 (1988). | Zbl

[13] L. Hörmander,The Analysis of Linear Partial Differential Operators I and III, Springer-Verlag. | Zbl

[14] L. Hörmander, Lecture Notes at the Nordic Summer School of mathematics (1968).

[15] P.-L. Lions, T. Paul, Sur les mesures de Wigner, Revista Matemática Iberoamericana, 9 (3) (1993), 553-618. | MR | Zbl

[16] L. Miller, Propagation d’ondes semi-classiques à travers une interface et mesures 2-microlocales, Doctorat de l’Ecole Polytechnique, Palaiseau (1996).

[17] L. Miller, Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary, J. Math. Pures Appl. (9) 79 (2000), 227–269. | MR | Zbl

[18] B. Perthame, L. Vega, Morrey-campanato estimates for the Helmholtz equation, J. Funct. Anal. 164(2) (1999), 340-355. | MR | Zbl

[19] X.P. Wang, P. Zhang, High frequency limit of the Helmholtz equation with variable index of refraction, Preprint (2004) | Zbl

[20] E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932)

Cited by Sources: