Thin vortex tubes in the stationary Euler equation
Journées équations aux dérivées partielles (2013), article no. 4, 13 p.

In this paper we outline some recent results concerning the existence of steady solutions to the Euler equation in 3 with a prescribed set of (possibly knotted and linked) thin vortex tubes.

On expose quelques nouveaux résultats sur l’existence de solutions stationnaires à l’équation d’Euler sur 3 avec un ensemble de tubes de vorticité étroits (qui peuvent être noués et entrelacés) qu’on peut prescrire a priori.

DOI: 10.5802/jedp.100
Enciso, Alberto 1; Peralta-Salas, Daniel 1

1 Instituto de Ciencias Matemáticas Consejo Superior de Investigaciones Científicas 28049 Madrid, Spain
@article{JEDP_2013____A4_0,
     author = {Enciso, Alberto and Peralta-Salas, Daniel},
     title = {Thin vortex tubes in the stationary {Euler} equation},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {4},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2013},
     doi = {10.5802/jedp.100},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.100/}
}
TY  - JOUR
AU  - Enciso, Alberto
AU  - Peralta-Salas, Daniel
TI  - Thin vortex tubes in the stationary Euler equation
JO  - Journées équations aux dérivées partielles
PY  - 2013
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.100/
DO  - 10.5802/jedp.100
LA  - en
ID  - JEDP_2013____A4_0
ER  - 
%0 Journal Article
%A Enciso, Alberto
%A Peralta-Salas, Daniel
%T Thin vortex tubes in the stationary Euler equation
%J Journées équations aux dérivées partielles
%D 2013
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.100/
%R 10.5802/jedp.100
%G en
%F JEDP_2013____A4_0
Enciso, Alberto; Peralta-Salas, Daniel. Thin vortex tubes in the stationary Euler equation. Journées équations aux dérivées partielles (2013), article  no. 4, 13 p. doi : 10.5802/jedp.100. http://www.numdam.org/articles/10.5802/jedp.100/

[1] V.I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966) 319–361. | Numdam | MR | Zbl

[2] V.I. Arnold, B. Khesin, Topological methods in hydrodynamics, Springer, New York, 1999. | MR | Zbl

[3] D. Córdoba, C. Fefferman, On the collapse of tubes carried by 3D incompressible flows, Comm. Math. Phys. 222 (2001) 293–298. | MR | Zbl

[4] J. Deng, T.Y. Hou, X. Yu, Geometric properties and nonblowup of 3D incompressible Euler flow. Comm. PDE 30 (2005) 225–243. | MR | Zbl

[5] A. Enciso, D. Peralta-Salas, Knots and links in steady solutions of the Euler equation, Ann. of Math. 175 (2012) 345–367. | MR | Zbl

[6] A. Enciso, D. Peralta-Salas, Existence of knotted vortex tubes in steady Euler flows, arXiv:1210.6271.

[7] A. Enciso, D. Peralta-Salas, Non-existence and structure for Beltrami fields with nonconstant proportionality factor, arXiv:1402.6825.

[8] A. González-Enríquez, R. de la Llave, Analytic smoothing of geometric maps with applications to KAM theory, J. Differential Equations 245 (2008) 1243–1298. | MR | Zbl

[9] H. von Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math. 55 (1858) 25–55. | Zbl

[10] D. Kleckner, W.T.M. Irvine, Creation and dynamics of knotted vortices, Nature Phys. 9 (2013) 253–258.

[11] R.B. Pelz, Symmetry and the hydrodynamic blow-up problem, J. Fluid Mech. 444 (2001) 299–320. | MR | Zbl

[12] W. Thomson (Lord Kelvin), Vortex Statics, Proc. R. Soc. Edinburgh 9 (1875) 59–73 (reprinted in: Mathematical and physical papers IV, Cambridge University Press, Cambridge, 2011, pp. 115–128).

[13] N. Nadirashvili, Liouville theorem for Beltrami flow, Geom. Funct. Anal. 24 (2014) 916–921.

Cited by Sources: