We present a combinatorial monomial basis (or, more precisely, a family of monomial bases) in every finite-dimensional irreducible -module. These bases are in many ways similar to the FFLV bases for types and . They are also defined combinatorially via sums over Dyck paths in certain triangular grids. Our sums, however, involve weights depending on the length of the corresponding root. Accordingly, our bases also induce bases in certain degenerations of the modules but these degenerations are obtained not from the filtration by PBW degree but by a weighted version thereof.
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/alco.41
Classification : 17B10, 17B20, 05E10
Mots clés : Lie algebras, type B, monomial bases, FFLV bases, FFLV polytopes, PBW degenerations
@article{ALCO_2019__2_2_305_0, author = {Makhlin, Igor}, title = {FFLV-type monomial bases for type $B$}, journal = {Algebraic Combinatorics}, pages = {305--322}, publisher = {MathOA foundation}, volume = {2}, number = {2}, year = {2019}, doi = {10.5802/alco.41}, zbl = {07049527}, mrnumber = {3934832}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.41/} }
TY - JOUR AU - Makhlin, Igor TI - FFLV-type monomial bases for type $B$ JO - Algebraic Combinatorics PY - 2019 DA - 2019/// SP - 305 EP - 322 VL - 2 IS - 2 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.41/ UR - https://zbmath.org/?q=an%3A07049527 UR - https://www.ams.org/mathscinet-getitem?mr=3934832 UR - https://doi.org/10.5802/alco.41 DO - 10.5802/alco.41 LA - en ID - ALCO_2019__2_2_305_0 ER -
Makhlin, Igor. FFLV-type monomial bases for type $B$. Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 305-322. doi : 10.5802/alco.41. http://www.numdam.org/articles/10.5802/alco.41/
[1] Gelfand–Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes as marked poset polytopes, J. Comb. Theory, Ser. A, Volume 118 (2011) no. 8, pp. 2454-2462 | Article | MR 2834187 | Zbl 1234.52009
[2] The PBW filtration and convex polytopes in type , J. Pure Appl. Algebra, Volume 223 (2019) no. 1, pp. 245-276 | Article | MR 3833459 | Zbl 06934116
[3] Lie Algebras of Finite and Affine Type, Cambridge Studies in Advanced Mathematics, 96, Cambridge University Press, 2005, xvii+632 pages | MR 2188930 | Zbl 1110.17001
[4] Quiver Grassmannians and degenerate flag varieties, Algebra Number Theory, Volume 6 (2012) no. 1, pp. 165-194 | Article | MR 2950163 | Zbl 1282.14083
[5] Extremal part of the PBW-filtration and nonsymmetric Macdonald polynomials, Adv. Math., Volume 282 (2015), pp. 220-264 | Article | MR 3374526 | Zbl 1378.17040
[6] The PBW filtration, Represent. Theory, Volume 13 (2009), pp. 165-181 | Article | MR 2506263 | Zbl 1229.17026
[7] degeneration of flag varieties, Sel. Math., New Ser., Volume 18 (2012) no. 3, pp. 513-537 | Article | MR 2960025 | Zbl 1267.14064
[8] PBW filtration and bases for irreducible modules in type , Transform. Groups, Volume 16 (2011) no. 1, pp. 71-89 | Article | MR 2785495 | Zbl 1237.17011
[9] PBW-filtration and bases for symplectic Lie algebras, Int. Math. Res. Not., Volume 2011 (2011) no. 24, pp. 5760-5784 | Article | MR 2863380 | Zbl 1233.17007
[10] Vertices of FFLV polytopes, J. Algebr. Comb., Volume 45 (2017) no. 4, pp. 1083-1110 | Article | MR 3641978 | Zbl 1370.05218
[11] Marked poset polytopes: Minkowski sums, indecomposables, and unimodular equivalence, J. Pure Appl. Algebra, Volume 220 (2016) no. 2, pp. 606-620 | Article | MR 3399380 | Zbl 1328.52007
[12] Degenerate coordinate rings of flag varieties and Frobenius splitting, Sel. Math., New Ser., Volume 20 (2014) no. 3, pp. 823-838 | Article | MR 3217462 | Zbl 1328.14081
[13] Newton–Okounkov polytopes of flag varieties, Transform. Groups, Volume 22 (2017) no. 2, pp. 387-402 | Article | MR 3649460 | Zbl 1396.14047
[14] Realization of affine type A Kirillov–Reshetikhin crystals via polytopes, J. Comb. Theory, Ser. A, Volume 120 (2013) no. 8, pp. 2093-2117 | MR 3102176 | Zbl 1300.17012
[15] Weight bases of Gelfand–Tsetlin type for representations of classical Lie algebras, J. Phys. A, Math. Gen., Volume 33 (1999) no. 22, pp. 4143-4168 | Article | MR 1766625 | Zbl 0988.17005
[16] Two poset polytopes, Discrete Comput. Geom., Volume 1 (1986), pp. 9-23 | Article | MR 824105 | Zbl 0595.52008
[17] On some canonical bases of representation spaces of simple Lie algebras (2005) (conference talk, Bielefeld)
Cité par Sources :