On the double-affine Bruhat order: the ε=1 conjecture and classification of covers in ADE type
Algebraic Combinatorics, Volume 2 (2019) no. 2, pp. 197-216.

For any Kac–Moody group G, we prove that the Bruhat order on the semidirect product of the Weyl group and the Tits cone for G is strictly compatible with a -valued length function. We conjecture in general and prove for G of affine ADE type that the Bruhat order is graded by this length function. We also formulate and discuss conjectures relating the length function to intersections of “double-affine Schubert varieties”.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.37
Classification: 05E10
Keywords: Kac–Moody groups, double-affine Bruhat order
Muthiah, Dinakar 1; Orr, Daniel 2

1 Department of Mathematics and Statistics Lederle Graduate Research Tower 1623D University of Massachusetts Amherst 710 N. Pleasant Street Amherst MA 01003-9305 (USA)
2 Department of Mathematics MC 0123 460 McBryde Hall Virginia Tech 225 Stanger St. Blacksburg VA 24061 (USA)
@article{ALCO_2019__2_2_197_0,
     author = {Muthiah, Dinakar and Orr, Daniel},
     title = {On the double-affine {Bruhat} order: the $\varepsilon =1$ conjecture and classification of covers in {ADE} type},
     journal = {Algebraic Combinatorics},
     pages = {197--216},
     publisher = {MathOA foundation},
     volume = {2},
     number = {2},
     year = {2019},
     doi = {10.5802/alco.37},
     mrnumber = {3934828},
     zbl = {1414.05304},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/alco.37/}
}
TY  - JOUR
AU  - Muthiah, Dinakar
AU  - Orr, Daniel
TI  - On the double-affine Bruhat order: the $\varepsilon =1$ conjecture and classification of covers in ADE type
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 197
EP  - 216
VL  - 2
IS  - 2
PB  - MathOA foundation
UR  - http://www.numdam.org/articles/10.5802/alco.37/
DO  - 10.5802/alco.37
LA  - en
ID  - ALCO_2019__2_2_197_0
ER  - 
%0 Journal Article
%A Muthiah, Dinakar
%A Orr, Daniel
%T On the double-affine Bruhat order: the $\varepsilon =1$ conjecture and classification of covers in ADE type
%J Algebraic Combinatorics
%D 2019
%P 197-216
%V 2
%N 2
%I MathOA foundation
%U http://www.numdam.org/articles/10.5802/alco.37/
%R 10.5802/alco.37
%G en
%F ALCO_2019__2_2_197_0
Muthiah, Dinakar; Orr, Daniel. On the double-affine Bruhat order: the $\varepsilon =1$ conjecture and classification of covers in ADE type. Algebraic Combinatorics, Volume 2 (2019) no. 2, pp. 197-216. doi : 10.5802/alco.37. http://www.numdam.org/articles/10.5802/alco.37/

[1] Björner, Anders; Brenti, Francesco Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, 2005, xiv+363 pages | MR | Zbl

[2] Braverman, Alexander; Finkelberg, Michael Pursuing the double affine Grassmannian. I. Transversal slices via instantons on A k -singularities, Duke Math. J., Volume 152 (2010) no. 2, pp. 175-206 | DOI | MR | Zbl

[3] Braverman, Alexander; Kazhdan, David; Patnaik, Manish M. Iwahori-Hecke algebras for p-adic loop groups, Invent. Math., Volume 204 (2016) no. 2, pp. 347-442 | DOI | MR | Zbl

[4] Finkelberg, Michael; Mirković, Ivan Semi-infinite flags. I. Case of global curve 1 , Differential topology, infinite-dimensional Lie algebras, and applications (Advances in the Mathematical Sciences), Volume 194, American Mathematical Society, 1999, pp. 81-112 | DOI | MR | Zbl

[5] Kac, Victor G. Infinite-dimensional Lie algebras, Cambridge University Press, 1990, xxii+400 pages | DOI | MR | Zbl

[6] Muthiah, Dinakar On Iwahori-Hecke algebras for p-adic loop groups: double coset basis and Bruhat order, Am. J. Math., Volume 140 (2018) no. 1, pp. 221-244 | DOI | MR | Zbl

Cited by Sources: