Measurable functionals on function spaces
Annales de l'Institut Fourier, Volume 31 (1981) no. 2, pp. 137-152.

We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.

Sur certains espaces de fonctions, chaque forme mesurable est une mesure; ceci renforce les résultats connus qui affirment que certains espaces de mesures sont faiblement séquentiellement complets. Nous tirons plusieurs conséquences dans la forme suivante : si l’espace des formes invariantes sur un espace de fonctions est séparable, alors chaque forme invariante est une mesure.

@article{AIF_1981__31_2_137_0,
     author = {Christensen, J. P. Reus and Pachl, J. K.},
     title = {Measurable functionals on function spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {137--152},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {2},
     year = {1981},
     doi = {10.5802/aif.832},
     mrnumber = {82j:46035},
     zbl = {0437.46022},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.832/}
}
TY  - JOUR
AU  - Christensen, J. P. Reus
AU  - Pachl, J. K.
TI  - Measurable functionals on function spaces
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 137
EP  - 152
VL  - 31
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.832/
DO  - 10.5802/aif.832
LA  - en
ID  - AIF_1981__31_2_137_0
ER  - 
%0 Journal Article
%A Christensen, J. P. Reus
%A Pachl, J. K.
%T Measurable functionals on function spaces
%J Annales de l'Institut Fourier
%D 1981
%P 137-152
%V 31
%N 2
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.832/
%R 10.5802/aif.832
%G en
%F AIF_1981__31_2_137_0
Christensen, J. P. Reus; Pachl, J. K. Measurable functionals on function spaces. Annales de l'Institut Fourier, Volume 31 (1981) no. 2, pp. 137-152. doi : 10.5802/aif.832. http://www.numdam.org/articles/10.5802/aif.832/

[1] J. P. R. Christensen, Topology and Borel Structure, North-Holland, 1974.

[2] J. B. Cooper and W. Schachermayer, Uniform measures and co-Saks spaces, Proc. Internat. Seminar Functional Analysis, Rio de Janeiro 1978. | Zbl

[3] E. G. Effros, Property Γ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486. | MR | Zbl

[4] Z. Frolík, Four functors into paved spaces, Seminar Uniform Spaces 1973-1974, Math. Inst. Czechoslovak Academy of Sciences, 1975. | Zbl

[5] Z. Frolík, Mesures uniformes, C.R. Acad. Sc., Paris, 277 (1973), A105-A108. | Zbl

[6] Z. Frolík, A survey of separable descriptive theory of sets and spaces, Czechoslovak Math. J., 20 (95) (1970), 406-467. | MR | Zbl

[7] E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means I, Illinois J. Math., 7 (1963), 38-48. | Zbl

[8] E. Granirer, On left amenable semigroups which admit countable left invariant means, Bull. Amer. Math. Soc., 69 (1963), 101-105. | MR | Zbl

[9] E. Granirer, Exposed points of convex sets and weak sequential convergence, Memoirs Amer. Math. Soc., 123 (1972). | MR | Zbl

[10] F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand 1969. | MR | Zbl

[11] J. R. Isbell, Uniform Spaces, Amer. Math. Soc., 1964. | MR | Zbl

[12] M. Klawe, On the dimension of left invariant means and left thick subsets, Trans. Amer. Math. Soc., 231 (1977), 507-518. | MR | Zbl

[13] I. Namioka, On certain actions of semi-groups on L-spaces, Stud. Math., 29 (1967), 63-77. | MR | Zbl

[14] J. C. Oxtoby, Cartesian products of Baire spaces, Fund. Math., 49 (1961), 157-166. | MR | Zbl

[15] J. K. Pachl, Measures as functionals on uniformly continuous functions, Pacific J. Math., 82 (1979), 515-521. | MR | Zbl

[16] H. Pfister, Räume von stetigen Funktionen und summenstetige Abbildungen, Ludwig-Maximilians-Universität München, 1978.

[17] M. Talagrand, Espaces de Banach faiblement K-analytiques, C.R. Acad. Sc., Paris, 284 (1977), A 745-748. | MR | Zbl

[18] V. S. Varadarajan, Measures on topological spaces (Russian), Mat. Sbornik, 55 (97) (1961), 33-100. - Amer. Math. Soc. Transl., (2) 48 (1965), 161-228. | MR | Zbl

[19] M. Zahradník, l1-continuous partitions of unity on normed spaces, Czechoslovak Math. J., 26 (101) (1976), 319-329. | MR | Zbl

Cited by Sources: