We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.
Sur certains espaces de fonctions, chaque forme mesurable est une mesure; ceci renforce les résultats connus qui affirment que certains espaces de mesures sont faiblement séquentiellement complets. Nous tirons plusieurs conséquences dans la forme suivante : si l’espace des formes invariantes sur un espace de fonctions est séparable, alors chaque forme invariante est une mesure.
@article{AIF_1981__31_2_137_0, author = {Christensen, J. P. Reus and Pachl, J. K.}, title = {Measurable functionals on function spaces}, journal = {Annales de l'Institut Fourier}, pages = {137--152}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {2}, year = {1981}, doi = {10.5802/aif.832}, mrnumber = {82j:46035}, zbl = {0437.46022}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.832/} }
TY - JOUR AU - Christensen, J. P. Reus AU - Pachl, J. K. TI - Measurable functionals on function spaces JO - Annales de l'Institut Fourier PY - 1981 SP - 137 EP - 152 VL - 31 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.832/ DO - 10.5802/aif.832 LA - en ID - AIF_1981__31_2_137_0 ER -
%0 Journal Article %A Christensen, J. P. Reus %A Pachl, J. K. %T Measurable functionals on function spaces %J Annales de l'Institut Fourier %D 1981 %P 137-152 %V 31 %N 2 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.832/ %R 10.5802/aif.832 %G en %F AIF_1981__31_2_137_0
Christensen, J. P. Reus; Pachl, J. K. Measurable functionals on function spaces. Annales de l'Institut Fourier, Volume 31 (1981) no. 2, pp. 137-152. doi : 10.5802/aif.832. http://www.numdam.org/articles/10.5802/aif.832/
[1] Topology and Borel Structure, North-Holland, 1974.
,[2] Uniform measures and co-Saks spaces, Proc. Internat. Seminar Functional Analysis, Rio de Janeiro 1978. | Zbl
and ,[3] Property Γ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486. | MR | Zbl
,[4] Four functors into paved spaces, Seminar Uniform Spaces 1973-1974, Math. Inst. Czechoslovak Academy of Sciences, 1975. | Zbl
,[5] Mesures uniformes, C.R. Acad. Sc., Paris, 277 (1973), A105-A108. | Zbl
,[6] A survey of separable descriptive theory of sets and spaces, Czechoslovak Math. J., 20 (95) (1970), 406-467. | MR | Zbl
,[7] On amenable semigroups with a finite-dimensional set of invariant means I, Illinois J. Math., 7 (1963), 38-48. | Zbl
,[8] On left amenable semigroups which admit countable left invariant means, Bull. Amer. Math. Soc., 69 (1963), 101-105. | MR | Zbl
,[9] Exposed points of convex sets and weak sequential convergence, Memoirs Amer. Math. Soc., 123 (1972). | MR | Zbl
,[10] Invariant Means on Topological Groups, Van Nostrand 1969. | MR | Zbl
,[11] Uniform Spaces, Amer. Math. Soc., 1964. | MR | Zbl
,[12] On the dimension of left invariant means and left thick subsets, Trans. Amer. Math. Soc., 231 (1977), 507-518. | MR | Zbl
,[13] On certain actions of semi-groups on L-spaces, Stud. Math., 29 (1967), 63-77. | MR | Zbl
,[14] Cartesian products of Baire spaces, Fund. Math., 49 (1961), 157-166. | MR | Zbl
,[15] Measures as functionals on uniformly continuous functions, Pacific J. Math., 82 (1979), 515-521. | MR | Zbl
,[16] Räume von stetigen Funktionen und summenstetige Abbildungen, Ludwig-Maximilians-Universität München, 1978.
,[17] Espaces de Banach faiblement K-analytiques, C.R. Acad. Sc., Paris, 284 (1977), A 745-748. | MR | Zbl
,[18] Measures on topological spaces (Russian), Mat. Sbornik, 55 (97) (1961), 33-100. - Amer. Math. Soc. Transl., (2) 48 (1965), 161-228. | MR | Zbl
,[19] l1-continuous partitions of unity on normed spaces, Czechoslovak Math. J., 26 (101) (1976), 319-329. | MR | Zbl
,Cited by Sources: