Whitney regularity and generic wings
Annales de l'Institut Fourier, Volume 31 (1981) no. 2, pp. 87-111.

Given adjacent subanalytic strata (X,Y) in R n verifying Kuo’s ratio test (r) (resp. Verdier’s (w)-regularity) we find an open dense subset of the codimension k C 1 submanifolds W (wings) containing Y such that (XW,Y) is generically Whitney (b π )-regular is exactly one more than the dimension of the set of limits of vectors for which (b π ) fails. A general position argument for smooth strata is also given.

Étant donné un couple (X,Y) de strates sous-analytiques dans R n qui vérifient le critère (r) de Kuo (resp. la condition (w) de Verdier), nous trouvons un ouvert dense U des sous-variétés W de classe C 1 et codimension k qui contiennent Y (les ailes), telles que (XW,Y) vérifie (r)(resp.(w)) si WU. Si dimY=1, le plus petit entier k tel que (XW,Y) vérifie la condition (b π ) de Whitney est égal à 1+dimΛ π , où Λ π est l’ensemble des limites de vecteurs pour lesquels (b π ) n’est pas satisfaite. Grâce à un argument de position nous obtenons aussi un résultat pour les strates de classe C 1 .

@article{AIF_1981__31_2_87_0,
     author = {Aznar, V. Navarro and Trotman, David J. A.},
     title = {Whitney regularity and generic wings},
     journal = {Annales de l'Institut Fourier},
     pages = {87--111},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {2},
     year = {1981},
     doi = {10.5802/aif.830},
     mrnumber = {82j:58009},
     zbl = {0442.58002},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.830/}
}
TY  - JOUR
AU  - Aznar, V. Navarro
AU  - Trotman, David J. A.
TI  - Whitney regularity and generic wings
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 87
EP  - 111
VL  - 31
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.830/
DO  - 10.5802/aif.830
LA  - en
ID  - AIF_1981__31_2_87_0
ER  - 
%0 Journal Article
%A Aznar, V. Navarro
%A Trotman, David J. A.
%T Whitney regularity and generic wings
%J Annales de l'Institut Fourier
%D 1981
%P 87-111
%V 31
%N 2
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.830/
%R 10.5802/aif.830
%G en
%F AIF_1981__31_2_87_0
Aznar, V. Navarro; Trotman, David J. A. Whitney regularity and generic wings. Annales de l'Institut Fourier, Volume 31 (1981) no. 2, pp. 87-111. doi : 10.5802/aif.830. http://www.numdam.org/articles/10.5802/aif.830/

[1] J. Briançon et J.-P. Speder, La trivialité topologique n'implique pas les conditions de Whitney, C.R. Acad. Sci, Paris, t. 280, (1975), 365-367. | MR | Zbl

[2] J. Briançon et J.-P. Speder, Les conditions de Whitney impliquent µ*-constant, Annales de l'Institut Fourier, Grenoble, 26(2) (1976), 153-163. | Numdam | MR | Zbl

[3] J. Briançon et J.-P. Speder, Equisingularité et conditions de Whitney, Thèses, Université de Nice, 1976.

[4] H. Brodersen and D. J. A. Trotman, Whitney (b)-regularity is strictly weaker than Kuo's ratio test for real algebraic stratifications, Mathematica Scandinavia, 45, (1979), 27-34. | MR | Zbl

[5] H. Hironaka, Subanalytic sets, in Number Theory, Algebraic Geometry and Commutative Algebra, volume in honour of Y. Akizuki, Kinokuniya, Tokyo (1973), 453-493. | MR | Zbl

[6] T.-C. Kuo, The ratio test for analytic Whitney stratifications, Liverpool Singularities Symposium I. (ed. C.T.C. Wall), Springer Lecture Notes, Berlin, 192 (1971), 141-149. | MR | Zbl

[7] Le D¨Ng Tràng et K. Saito, La constance du nombre de Milnor donne des bonnes stratifications. C.R. Acad. Sci., Paris, t. 277 (1973), 793-795. | MR | Zbl

[8] V. Navarro Aznar, Conditions de Whitney et sections planes, Inventiones Math., 61 (1980), 199-225. | MR | Zbl

[9] B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités de Cargèse, Astérisque (Société Mathématique de France), 7-8 (1973), 285-362. | MR | Zbl

[10] B. Teissier, Introduction to equisingularity problems, A.M.S. Algebraic Geometry Symposium, Arcata, 1974, Providence, Rhode Island (1975), 593-632. | MR | Zbl

[11] B. Teissier, Variétés polaires locales et conditions de Whitney, C.R. Acad. Sci., Paris, t. 290 (1980), 799-802. | MR | Zbl

[12] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. (1969), 240-284. | MR | Zbl

[13] D.J.A. Trotman, Counterexamples in stratification theory : two discordant horns, Real and Complex Singularities, Oslo, 1976 (éd. P. Holm), Sijthoff et Noordhoff (1977), 679-686. | MR | Zbl

[14] D.J.A. Trotman, Whitney stratifications : faults and detectors, Thesis, University of Warwick, 1977.

[15] D.J.A. Trotman, Interprétations topologiques des conditions de Whitney, Journées Singulières de Dijon, juin 1978, Astérisque, 59-60 (1979), 233-248. | Numdam | MR | Zbl

[16] J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Math., 36 (1976), 295-312. | MR | Zbl

[17] C.T.C. Wall, Regular stratifications, Dynamical Systems, Warwick, 1974, Springer Lecture Notes, 468 (1975), 332-344. | MR | Zbl

[18] H. Whitney, Local properties of analytic varieties, Diff. and Comb. Topology (ed. S. Cairns), Princeton (1965), 205-244. | MR | Zbl

[19] H. Whitney, Tangents to an analytic variety. Annals of Math., 81 (1965), 496-549. | MR | Zbl

[20] B. Teissier, The hunting of invariants in the geometry of discriminants, in Real and Complex Singularities, Oslo, 1976 (ed. P. Holm), Sijthoff et Noordhoof, Alphen aan den Rijn, 1977. | Zbl

[21] J.-P. Henry et M. Merle, Sections planes, limites d'espaces tangents et transversalité de variétés polaires, C.R. Acad. Sci., Paris, t. 291 (1980), 291-294. | MR | Zbl

Cited by Sources: