If is a -dim polyhedran, then using geometric techniques, we construct groups and such that there are natural isomorphisms and which induce an intersection pairing. These groups give a geometric interpretation of two spectral sequences studied by Zeeman and allow us to prove a conjecture of Zeeman about them.
Si est un polyèdre de dimension , en employant des techniques géométriques, nous construisons des groupes et avec des isomorphismes naturels et induisant un accouplement d’intersection.
Ces groupes donnent une interprétation géométrique des deux suites spectrales étudiées par Zeeman et nous permettent de prouver une conjecture de Zeeman à leur sujet.
@article{AIF_1972__22_4_47_0, author = {Gordon, Gerald Leonard}, title = {A {Poincar\'e} duality type theorem for polyhedra}, journal = {Annales de l'Institut Fourier}, pages = {47--58}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {22}, number = {4}, year = {1972}, doi = {10.5802/aif.434}, mrnumber = {49 #3904}, zbl = {0234.55012}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.434/} }
TY - JOUR AU - Gordon, Gerald Leonard TI - A Poincaré duality type theorem for polyhedra JO - Annales de l'Institut Fourier PY - 1972 SP - 47 EP - 58 VL - 22 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.434/ DO - 10.5802/aif.434 LA - en ID - AIF_1972__22_4_47_0 ER -
Gordon, Gerald Leonard. A Poincaré duality type theorem for polyhedra. Annales de l'Institut Fourier, Volume 22 (1972) no. 4, pp. 47-58. doi : 10.5802/aif.434. http://www.numdam.org/articles/10.5802/aif.434/
[1] The residue calculus in several complex variables. (To appear). | Zbl
,[2] Topology, Chelsea, New York, 1956. | Zbl
,[3] The Theory of Sheaves, University of Chicago Press, Chicago, 1964. | Zbl
,[4] Dihomology III, Proceedings of the London Math. Soc., (3), Vol. 13 (1963), pp. 155-183. | Zbl
,Cited by Sources: