Constructing manifolds by homotopy equivalences I. An obstruction to constructing PL-manifolds from homology manifolds
Annales de l'Institut Fourier, Volume 22 (1972) no. 1, pp. 271-286.

We aim at constructing a PL-manifold which is cellularly equivalent to a given homology manifold M n . The main theorem says that there is a unique obstruction element in H n-4 (M, 3 ), where 3 is the group of 3-dimensional PL-homology spheres modulo those which are the boundary of an acyclic PL-manifold. If the obstruction is zero and M is compact, we obtain a PL-manifold which is simple homotopy equivalent to M.

Nous visons à construire une variété semi-linéaire qui est cellulairement équivalente à une variété homologique M n donnée. Le théorème dit qu’il y a un élément d’obstruction unique dans H n-4 (M; 3 ), où 3 est un groupe de sphères homologiques qui sont des variétés semi-linéaires. Les éléments triviaux de 3 sont ceux qui sont un bord d’une variété semi-linéaire acyclique. Si l’obstruction est zéro et M compacte, nous obtenons une variété semi-linéaire qui est simplement homotopiquement équivalente à M.

@article{AIF_1972__22_1_271_0,
     author = {Sato, Hajime},
     title = {Constructing manifolds by homotopy equivalences {I.} {An} obstruction to constructing {PL-manifolds} from homology manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {271--286},
     publisher = {Institut Fourier},
     volume = {22},
     number = {1},
     year = {1972},
     doi = {10.5802/aif.406},
     zbl = {0219.57009},
     mrnumber = {49 #1522},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.406/}
}
TY  - JOUR
AU  - Sato, Hajime
TI  - Constructing manifolds by homotopy equivalences I. An obstruction to constructing PL-manifolds from homology manifolds
JO  - Annales de l'Institut Fourier
PY  - 1972
DA  - 1972///
SP  - 271
EP  - 286
VL  - 22
IS  - 1
PB  - Institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.406/
UR  - https://zbmath.org/?q=an%3A0219.57009
UR  - https://www.ams.org/mathscinet-getitem?mr=49 #1522
UR  - https://doi.org/10.5802/aif.406
DO  - 10.5802/aif.406
LA  - en
ID  - AIF_1972__22_1_271_0
ER  - 
%0 Journal Article
%A Sato, Hajime
%T Constructing manifolds by homotopy equivalences I. An obstruction to constructing PL-manifolds from homology manifolds
%J Annales de l'Institut Fourier
%D 1972
%P 271-286
%V 22
%N 1
%I Institut Fourier
%U https://doi.org/10.5802/aif.406
%R 10.5802/aif.406
%G en
%F AIF_1972__22_1_271_0
Sato, Hajime. Constructing manifolds by homotopy equivalences I. An obstruction to constructing PL-manifolds from homology manifolds. Annales de l'Institut Fourier, Volume 22 (1972) no. 1, pp. 271-286. doi : 10.5802/aif.406. http://www.numdam.org/articles/10.5802/aif.406/

[1] M.C. Cohen, Homeomorphisms between homotopy manifolds and their resolutions, Inventions Math. 10 (1970), 239-250. | MR | Zbl

[2] W.C. Hsiang et W.Y. Hsiang, Differentiable actions of compact connected classical groups I, Amer. J. Math. 89 (1967), 705-786. | MR | Zbl

[3] M. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. | Numdam | MR | Zbl

[4] M. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67-72. | MR | Zbl

[5] M. Kervaire et J. Milnor, Groups of homotopy spheres I, Ann. Math. 77 (1963), 504-537. | MR | Zbl

[6] I. Tamura, Variety of manifolds (in Japanese), Sûgaku 21 (1969), 275-285.

[7] G.W. Whitehead, Generalized homology theory, Trans. Amer. Math. Soc. 102 (1962), 227-283. | MR | Zbl

[8] J.H.C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950), 1-57. | MR | Zbl

[9] D. Sullivan, Geometric periodicity and the invariants of manifolds, Lecture Notes in Math. Springer Verlag 197, 44-75. | MR | Zbl

Cited by Sources: