On construit des ensembles aléatoires de multiplicité rationnellement indépendants, précisant ces propriétés sous deux aspects techniques. On améliore quelques résultats obtenus par les processus gaussiens ou la méthode topologique de catégorie.
The note discusses a probabilistic method for constructing “small” sets, with regard to differentiable transformations and to quantitative measures of independence.
@article{AIF_1971__21_2_23_0, author = {Kaufman, Robert}, title = {Analysis on some linear sets}, journal = {Annales de l'Institut Fourier}, pages = {23--29}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {21}, number = {2}, year = {1971}, doi = {10.5802/aif.370}, zbl = {0215.25403}, mrnumber = {49 #5677}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.370/} }
TY - JOUR AU - Kaufman, Robert TI - Analysis on some linear sets JO - Annales de l'Institut Fourier PY - 1971 DA - 1971/// SP - 23 EP - 29 VL - 21 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.370/ UR - https://zbmath.org/?q=an%3A0215.25403 UR - https://www.ams.org/mathscinet-getitem?mr=49 #5677 UR - https://doi.org/10.5802/aif.370 DO - 10.5802/aif.370 LA - en ID - AIF_1971__21_2_23_0 ER -
Kaufman, Robert. Analysis on some linear sets. Annales de l'Institut Fourier, Tome 21 (1971) no. 2, pp. 23-29. doi : 10.5802/aif.370. http://www.numdam.org/articles/10.5802/aif.370/
[1] An introduction to Diophantine approximation, Cambridge Tract 45, (1957). | MR 19,396h | Zbl 0077.04801
,[2] A note on Diophantine approximation II. Mathematika 11 (1964), 50-58. | MR 29 #3432 | Zbl 0122.05903
,[3] Images browniennes des ensembles parfaits, C.R. Acad. Sci., Paris 263A (1966), 613-615. | MR 35 #3752 | Zbl 0158.35703
,[4] Ensembles parfaits, Hermann, Paris, 1963. | Zbl 0112.29304
and ,[5] Sets of multiplicity in locally compact abelian groups, Ann. Inst. Fourier (Grenoble) 16 (1966), 123-158. | Numdam | MR 35 #3379 | Zbl 0145.03501
,[6] Trigonometric Series, Cambridge, (1959, 1968). | Zbl 0085.05601
,Cité par Sources :