For a reductive group and a finite order Cartan-type automorphism of , we construct an eigenvariety parameterizing -invariant cuspidal Hecke eigensystems of . In particular, for , we prove, any self-dual cuspidal Hecke eigensystem can be deformed in a p-adic family of self-dual cuspidal Hecke eigensystems containing a Zariski dense subset of classical points.
Pour un groupe réductif et un automorphisme d’ordre fini de type Cartan de nous construisons une variété propre paramétrant les systèmes propres de Hecke automorphes cuspidaux -invariants de . En particulier, pour , on prouve que chaque système propre de Hecke cuspidale autoduale de pente finie peut être déformé dans une famille -adique de sytèmes propres de Hecke cuspidaux autoduaux contenant un sous-ensemble Zariski-dense de points classiques.
Revised:
Accepted:
Published online:
Keywords: eigenvariety, p-adic automorphic form, self-dual representation
Mot clés : variété propre, forme automorphe p-adique, représentation autoduale
@article{AIF_2018__68_6_2381_0, author = {Xiang, Zhengyu}, title = {Twisted eigenvarieties and self-dual representations}, journal = {Annales de l'Institut Fourier}, pages = {2381--2444}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {6}, year = {2018}, doi = {10.5802/aif.3212}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3212/} }
TY - JOUR AU - Xiang, Zhengyu TI - Twisted eigenvarieties and self-dual representations JO - Annales de l'Institut Fourier PY - 2018 SP - 2381 EP - 2444 VL - 68 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3212/ DO - 10.5802/aif.3212 LA - en ID - AIF_2018__68_6_2381_0 ER -
%0 Journal Article %A Xiang, Zhengyu %T Twisted eigenvarieties and self-dual representations %J Annales de l'Institut Fourier %D 2018 %P 2381-2444 %V 68 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3212/ %R 10.5802/aif.3212 %G en %F AIF_2018__68_6_2381_0
Xiang, Zhengyu. Twisted eigenvarieties and self-dual representations. Annales de l'Institut Fourier, Volume 68 (2018) no. 6, pp. 2381-2444. doi : 10.5802/aif.3212. http://www.numdam.org/articles/10.5802/aif.3212/
[1] The -Lefschetz numbers of Hecke operators, Invent. Math., Volume 97 (2003) no. 2, pp. 257-290 | Zbl
[2] Simple algebras, Base change and the advanced theory of the trace formula, Annals of Mathematics Studies, 120, Princeton University Press, 1989, xiii+230 pages | Zbl
[3] Rigidity of -adic cohomology classes of congruence subgroups of , Proc. Lond. Math. Soc., Volume 96 (2008) no. 2, pp. 367-388 | Zbl
[4] -adic deformation of arithmetic cohomology (2008) (Preprint)
[5] Cuspidal representations of reductive groups (2008) (https://arxiv.org/abs/0810.0787)
[6] On the cuspidal cohomology of S-arithmetic subgroups of reductive groups over number fields, Compos. Math., Volume 102 (1996) no. 1, pp. 1-40 | Zbl
[7] Continuous cohomology, discrete subgroups, and representations of reductive groups, Mathematical Surveys and Monographs, 67, American Mathematical Society, 1999, xvii+260 pages | Zbl
[8] Eigenvarieties, -functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 59-120 | Zbl
[9] Motifs et formes automorphes: Applications du principe de fonctorialité, Automorphic Forms, Shimura Varieties, and -functions. Volume I (Perspectives in Mathematics), Volume 10, Academic Press, 1990, pp. 77-159 | Zbl
[10] -adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997) no. 3, pp. 417-479 | Zbl
[11] Harmonic analysis in weighted -spaces, Ann. Sci. Éc. Norm. Supér., Volume 31 (1998) no. 2, pp. 181-279 | Zbl
[12] A decomposition of spaces of automorphic forms and the Eisenstein cohomology of arithmetic groups, Math. Ann., Volume 331 (1998) no. 4, pp. 765-790 | Zbl
[13] Representations of algebraic groups, Mathematical Surveys and Monographs, 107, American Mathematical Society, 2003 | Zbl
[14] Algebraic groups, Lie Groups, and their arithmetic subgroups (2010) (available at www.jmilne.org/math/)
[15] Endomorphismes completement continus des espaces de Banach -adiques, Publ. Math., Inst. Hautes Étud. Sci., Volume 12 (1962), pp. 62-85 | Zbl
[16] Unitary representations of with non-trivial -cohomology, Invent. Math., Volume 71 (1983) no. 3, pp. 443-465 | Zbl
[17] Reductive groups, Automorphic forms, representations and -functions (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 3-29 | Zbl
[18] Eigenvarieties for reductive groups, Ann. Math., Volume 174 (2011) no. 3, pp. 1685-1784 | Zbl
[19] Unitary representations with nonzero cohomology, Compos. Math., Volume 53 (1984) no. 1, pp. 51-90 | Zbl
[20] A construction of the full eigenvariety of a reductive group, J. Number Theory, Volume 132 (2012) no. 5, pp. 938-952 | Zbl
[21] Twisted Lefschetz number formula and p-adic trace formula (2016) (to appear in Trans. Am. Math. Soc.)
Cited by Sources: