It is conjectured by de Jong that, if is a connected smooth projective variety over an algebraically closed field k of characteristic with trivial étale fundamental group, any isocrystal on is constant. We prove this conjecture under certain additional assumptions.
de Jong a conjecturé que sur une variété lisse projective connexe sur un corps algébriquement clos de caractéristique , de groupe fondamental étale trivial, tout isocristal est constant. Nous prouvons cette conjecture sous certaines hypothèses supplémentaires.
Revised:
Accepted:
Published online:
Keywords: isocrystals, simply connected varieties
Mot clés : isocristaux, variétés simplement connexes
@article{AIF_2018__68_5_2109_0, author = {Esnault, H\'el\`ene and Shiho, Atsushi}, title = {Convergent isocrystals on simply connected varieties}, journal = {Annales de l'Institut Fourier}, pages = {2109--2148}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3204}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3204/} }
TY - JOUR AU - Esnault, Hélène AU - Shiho, Atsushi TI - Convergent isocrystals on simply connected varieties JO - Annales de l'Institut Fourier PY - 2018 SP - 2109 EP - 2148 VL - 68 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3204/ DO - 10.5802/aif.3204 LA - en ID - AIF_2018__68_5_2109_0 ER -
%0 Journal Article %A Esnault, Hélène %A Shiho, Atsushi %T Convergent isocrystals on simply connected varieties %J Annales de l'Institut Fourier %D 2018 %P 2109-2148 %V 68 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3204/ %R 10.5802/aif.3204 %G en %F AIF_2018__68_5_2109_0
Esnault, Hélène; Shiho, Atsushi. Convergent isocrystals on simply connected varieties. Annales de l'Institut Fourier, Volume 68 (2018) no. 5, pp. 2109-2148. doi : 10.5802/aif.3204. http://www.numdam.org/articles/10.5802/aif.3204/
[1] Théorème de changement de base pour un morphisme lisse, et applications, Théorie des Topos et Cohomologie Étale des Schémas (SGA4 XVI) (Lecture Notes in Math.), Volume 305, Springer (1973), pp. 206-249 | Zbl
[2] Cohomologie cristalline des schémas de caractéristique , Lecture Notes in Math., 407, Springer, 1974 | Zbl
[3] Cohomologie rigide et cohomologie rigide à supports propres : première partie, prépublication de l’IRMAR (1996), pp. 1-91
[4] -modules arithmétiques I: Opérateurs différentiels de niveau fini, Ann. Sci. Éc. Norm. Supér., Volume 29 (1996) no. 2, pp. 185-272 | Zbl
[5] -modules arithmétiques II: Descente par Frobenius, Mém. Soc. Math. Fr., Nouv. Sér., Volume 81 (2000), pp. 1-136 | Zbl
[6] A note on Frobenius divided modules in mixed characteristics, Bull. Soc. Math. Fr., Volume 140 (2012) no. 3, pp. 441-458 | Zbl
[7] Notes on crystalline cohomology, Mathematical Notes, Princeton University Press, 1978 | Zbl
[8] -isocrystals and -adic representations, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46, American Mathematical Society (1987), pp. 111-138 | Zbl
[9] Simply connected projective manifolds in characteristic have no nontrivial stratified bundles, Invent. Math., Volume 181 (2010) no. 3, pp. 449-465 | Zbl
[10] Chern classes of crystals (to appear in Trans. Am. Math. Soc.)
[11] Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (1975), pp. 1-31 | Zbl
[12] Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. Fr., Nouv. Sér., Volume 21 (1985), pp. 1-87 | Zbl
[13] Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie), Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 5-361 | Zbl
[14] Crystals and de Rham cohomology of schemes, Dix Exposés sur la Cohomologie des Schémas (Advanced Studies Pure Math.), Volume 3, North-Holland (1968), pp. 306-358 | Zbl
[15] Représentations linéaires et compactifications profinies des groupes discrets, Manuscr. Math., Volume 2 (1970), pp. 375-396 | Zbl
[16] Revêtements étales et groupe fondamental, Lecture Notes in Math., 224, Springer, 1971 | Zbl
[17] The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Vieweg, 1997 | Zbl
[18] Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979), pp. 501-661 | Zbl
[19] Semistable sheaves in mixed characteristics, Duke Math. J., Volume 124 (2004), pp. 571-586
[20] Semistable sheaves in positive characteristic, Ann. Math., Volume 159 (2004), pp. 251-276 | Zbl
[21] On the -fundamental group scheme, Ann. Inst. Fourier, Volume 61 (2011), pp. 2077-2119 | Zbl
[22] Semistable modules over Lie algebroids in positive characteristic, Doc. Math., Volume 19 (2014), pp. 509-540 | Zbl
[23] Bogomolov’s inequality for Higgs sheaves in positive characteristic, Invent. Math., Volume 199 (2015), pp. 889-920 | Zbl
[24] Generic positivity and foliations in positive characteristic, Adv. Math., Volume 277 (2015), pp. 1-23 | Zbl
[25] Valuative criteria for families of vector bundles on algebraic varieties, Ann. Math., Volume 101 (1975), pp. 88-110 | Zbl
[26] Rigid cohomology, Cambridge Tracts in Mathematics, 172, Cambridge University Press, 2007 | Zbl
[27] On isomorphic matrix representations of infinite groups, Mat. Sb. N.S., Volume 8(50) (1940), pp. 405-422 | Zbl
[28] Homogeneous bundles in characteristic , Algebraic geometry—open problems (Ravello, 1982) (Lecture Notes in Math.), Volume 997, Springer (1983), pp. 315-320 | Zbl
[29] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970 | Zbl
[30] Cohomology of the infinitesimal site, Ann. Sci. Éc. Norm. Supér., Volume 8 (1975), pp. 295-318 | Zbl
[31] -isocrystals and de Rham cohomology II: Convergent isocrystals, Duke Math. J., Volume 51 (1984), pp. 765-850 | Zbl
[32] The convergent topos in characteristic , The Grothendieck Festschrift (Progress in Math.), Volume 88, Birkhäuser (1990), pp. 133-162 | Zbl
[33] Nonabelian Hodge theory in characteristic , Publ. Math., Inst. Hautes Étud. Sci., Volume 106 (2007), pp. 1-138 | Zbl
[34] Some remarks on the instability flag, Tohoku Math. J., Volume 36 (1984), pp. 269-291 | Zbl
[35] Fundamental group schemes for stratified sheaves, J. Algebra, Volume 317 (2007) no. 2, pp. 691-713 | Zbl
[36] A note on convergent isocrystals on simply connected varieties (2014) (https://arxiv.org/abs/1411.0456)
Cited by Sources: