We prove the finiteness of crystalline cohomology of higher level. An important ingredient is a “higher de Rham complex” that satisfies a kind of Poincaré lemma.
Nous prouvons la finitude de la cohomologie cristalline de niveau fini. Un ingrédient important est un “complexe de de Rham supérieur” qui satisfait un analogue du lemme de Poincaré.
Keywords: crystalline cohomology of higher level, Poincaré lemma
Mot clés : cohomologie cristalline de niveau fini, lemme de Poincaré
@article{AIF_2015__65_3_975_0, author = {Miyatani, Kazuaki}, title = {Finiteness of crystalline cohomology of higher level}, journal = {Annales de l'Institut Fourier}, pages = {975--1004}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {3}, year = {2015}, doi = {10.5802/aif.2949}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2949/} }
TY - JOUR AU - Miyatani, Kazuaki TI - Finiteness of crystalline cohomology of higher level JO - Annales de l'Institut Fourier PY - 2015 SP - 975 EP - 1004 VL - 65 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2949/ DO - 10.5802/aif.2949 LA - en ID - AIF_2015__65_3_975_0 ER -
%0 Journal Article %A Miyatani, Kazuaki %T Finiteness of crystalline cohomology of higher level %J Annales de l'Institut Fourier %D 2015 %P 975-1004 %V 65 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2949/ %R 10.5802/aif.2949 %G en %F AIF_2015__65_3_975_0
Miyatani, Kazuaki. Finiteness of crystalline cohomology of higher level. Annales de l'Institut Fourier, Volume 65 (2015) no. 3, pp. 975-1004. doi : 10.5802/aif.2949. http://www.numdam.org/articles/10.5802/aif.2949/
[1] Théorie de Topos et Cohomologie Étale des Schémas I, II, III, Lecture Notes in Math., 269, 270, 305, Springer-Verlag, 1971
[2] Cohomologie cristalline des schémas de caractéristique , Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974, pp. 604 | MR | Zbl
[3] Letter to Illusie, 1990
[4] -modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4), Volume 29 (1996) no. 2, pp. 185-272 | Numdam | MR | Zbl
[5] -modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) (2000) no. 81, pp. vi+136 | Numdam | Zbl
[6] Letter to Abe and the author, 2010
[7] Théorie des Intersections et Théorème de Riemann-Roch, Lecture Notes in Math., 225, Springer-Verlag, 1971
[8] Notes on crystalline cohomology, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978, pp. vi+243 | MR | Zbl
[9] Transversal crystals of finite level, Ann. Inst. Fourier (Grenoble), Volume 47 (1997) no. 1, pp. 69-100 | DOI | Numdam | MR | Zbl
[10] The exact Poincaré lemma in crystalline cohomology of higher level, J. Algebra, Volume 240 (2001) no. 2, pp. 559-588 | DOI | MR | Zbl
Cited by Sources: