On associe à une application polynomiale de dans lui-même à Jacobien constant non nul, une variété dont l’homologie ou l’homologie d’intersection décrit la géométrie à l’infini de cette application.
We associate to a given polynomial map from to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.
Classification : 14P10, 14R15, 32S20, 55N33
Mots clés : singularités à l’infini, valeurs asymptotiques, homologie d’intersection, conjecture Jacobienne.
@article{AIF_2014__64_5_2147_0, author = {Valette, Anna and Valette, Guillaume}, title = {On the geometry of polynomial mappings at infinity}, journal = {Annales de l'Institut Fourier}, pages = {2147--2163}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {5}, year = {2014}, doi = {10.5802/aif.2907}, mrnumber = {3330934}, zbl = {06387334}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2907/} }
TY - JOUR AU - Valette, Anna AU - Valette, Guillaume TI - On the geometry of polynomial mappings at infinity JO - Annales de l'Institut Fourier PY - 2014 DA - 2014/// SP - 2147 EP - 2163 VL - 64 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2907/ UR - https://www.ams.org/mathscinet-getitem?mr=3330934 UR - https://zbmath.org/?q=an%3A06387334 UR - https://doi.org/10.5802/aif.2907 DO - 10.5802/aif.2907 LA - en ID - AIF_2014__64_5_2147_0 ER -
Valette, Anna; Valette, Guillaume. On the geometry of polynomial mappings at infinity. Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 2147-2163. doi : 10.5802/aif.2907. http://www.numdam.org/articles/10.5802/aif.2907/
[1] Géométrie algébrique réelle, Springer, 1987 | MR 949442 | Zbl 0633.14016
[2] Intersection homology theory, Topology, Volume 19 (1980) no. 2, pp. 135-162 | Article | MR 572580 | Zbl 0448.55004
[3] Intersection homology. II, Invent. Math., Volume 72 (1983), pp. 77-129 | Article | MR 696691 | Zbl 0529.55007
[4] Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math., Volume 102 (1980) no. 2, pp. 291-302 | Article | MR 564475 | Zbl 0465.14012
[5] The set of point at which polynomial map is not proper, Ann. Polon. Math., Volume 58 (1993) no. 3, pp. 259-266 | MR 1244397 | Zbl 0806.14009
[6] Testing sets for properness of polynomial mappings, Math. Ann., Volume 315 (1999) no. 1, pp. 1-35 | Article | MR 1717542 | Zbl 0946.14039
[7] Geometry of real polynomial mappings, Math. Z., Volume 239 (2002) no. 2, pp. 321-333 | Article | MR 1888227 | Zbl 0997.14017
[8] Ganze Cremonatransformationen Monatschr, Math. Phys., Volume 47 (1939), pp. 229-306 | Zbl 0021.15303
[9] An Introduction to Intersection Homology Theory, Chapman & Hall/CRC, 2006 | MR 2207421 | Zbl 1106.55001
[10] Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 3 (1976) no. 2, pp. 245-266 | Numdam | MR 412180 | Zbl 0335.14001
[11] homology is an intersection homology, Adv. in Math., Volume 231 (2012) no. 3-4, pp. 1818-1842 | Article | MR 2964625 | Zbl 1258.14024
Cité par Sources :