We show that repelling periodic points are landing points of periodic rays for exponential maps whose singular value has bounded orbit. For polynomials with connected Julia sets, this is a celebrated theorem by Douady, for which we present a new proof. In both cases we also show that points in hyperbolic sets are accessible by at least one and at most finitely many rays. For exponentials this allows us to conclude that the singular value itself is accessible.
On montre que, pour toute fonction exponentielle avec orbite singulière bornée, chaque point périodique répulsif est le point d’atterrissage d’au moins un rayon externe avec adresse périodique. Cela généralise un théorème de Douady qui s’applique au polynômes complexes avec ensemble de Julia connexe, dont on donne une nouvelle démonstration.
Keywords: rigidity, accessibility, exponential maps, combinatorics
Mot clés : rigidité, atterrissage de rayons, fonction exponentielle, combinatorique
@article{AIF_2014__64_4_1493_0, author = {Benini, Anna Miriam and Lyubich, Mikhail}, title = {Repelling periodic points and landing of rays for post-singularly bounded exponential maps}, journal = {Annales de l'Institut Fourier}, pages = {1493--1520}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {4}, year = {2014}, doi = {10.5802/aif.2888}, mrnumber = {3329671}, zbl = {1323.37029}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2888/} }
TY - JOUR AU - Benini, Anna Miriam AU - Lyubich, Mikhail TI - Repelling periodic points and landing of rays for post-singularly bounded exponential maps JO - Annales de l'Institut Fourier PY - 2014 SP - 1493 EP - 1520 VL - 64 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2888/ DO - 10.5802/aif.2888 LA - en ID - AIF_2014__64_4_1493_0 ER -
%0 Journal Article %A Benini, Anna Miriam %A Lyubich, Mikhail %T Repelling periodic points and landing of rays for post-singularly bounded exponential maps %J Annales de l'Institut Fourier %D 2014 %P 1493-1520 %V 64 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2888/ %R 10.5802/aif.2888 %G en %F AIF_2014__64_4_1493_0
Benini, Anna Miriam; Lyubich, Mikhail. Repelling periodic points and landing of rays for post-singularly bounded exponential maps. Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1493-1520. doi : 10.5802/aif.2888. http://www.numdam.org/articles/10.5802/aif.2888/
[1] Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 9 (1984), pp. 49-77 | DOI | MR | Zbl
[2] Expansivity properties and rigidity for non-recurrent exponential maps (arXiv:1210.1353 [math.DS]) | MR | Zbl
[3] Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 9 (1999) no. 8, pp. 1517-1534 | DOI | MR | Zbl
[4] Dynamics of , Ergodic Theory Dynam. Systems, Volume 4 (1984) no. 1, pp. 35-52 | DOI | MR | Zbl
[5] Periodic points of polynomials, Ukrain. Mat. Zh., Volume 41 (1989) no. 11, p. 1467-1471, 1581 | DOI | MR | Zbl
[6] Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble), Volume 42 (1992) no. 4, pp. 989-1020 | DOI | EuDML | Numdam | MR | Zbl
[7] Parameter rays in the space of exponential maps, Ergodic Theory Dynam. Systems, Volume 29 (2009) no. 2, pp. 515-544 | DOI | MR | Zbl
[8] Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, pp. 467-511 | MR | Zbl
[9] Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems, Volume 3 (1983) no. 3, pp. 351-385 | DOI | MR | Zbl
[10] Poincaré series and instability of exponential maps, Bol. Soc. Mat. Mexicana (3), Volume 12 (2006) no. 2, pp. 213-228 | MR | Zbl
[11] Dynamics in one complex variable, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, NJ, 2006, pp. viii+304 | MR | Zbl
[12] Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps, Fund. Math., Volume 144 (1994) no. 3, pp. 259-278 | MR | Zbl
[13] A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc., Volume 134 (2006) no. 9, p. 2639-2648 (electronic) | DOI | MR | Zbl
[14] Topological dynamics of exponential maps on their escaping sets, Ergodic Theory Dynam. Systems, Volume 26 (2006) no. 6, pp. 1939-1975 | DOI | MR | Zbl
[15] On nonlanding dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., Volume 32 (2007) no. 2, pp. 353-369 | MR | Zbl
[16] Combinatorics of bifurcations in exponential parameter space, Transcendental dynamics and complex analysis (London Math. Soc. Lecture Note Ser.), Volume 348, Cambridge Univ. Press, Cambridge, 2008, pp. 317-370 | DOI | MR | Zbl
[17] Absence of line fields and Mañé’s theorem for nonrecurrent transcendental functions, Trans. Amer. Math. Soc., Volume 363 (2011) no. 1, pp. 203-228 | DOI | MR | Zbl
[18] On fibers and local connectivity of Mandelbrot and Multibrot sets, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1 (Proc. Sympos. Pure Math.), Volume 72, Amer. Math. Soc., Providence, RI, 2004, pp. 477-517 | MR | Zbl
[19] Escaping points of exponential maps, J. London Math. Soc. (2), Volume 67 (2003) no. 2, pp. 380-400 | DOI | MR | Zbl
[20] Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., Volume 28 (2003) no. 2, pp. 327-354 | MR | Zbl
Cited by Sources: