Extensions of generic measure-preserving actions
Annales de l'Institut Fourier, Volume 64 (2014) no. 2, pp. 607-623.

We show that, whenever Γ is a countable abelian group and Δ is a finitely-generated subgroup of Γ, a generic measure-preserving action of Δ on a standard atomless probability space (X,μ) extends to a free measure-preserving action of Γ on (X,μ). This extends a result of Ageev, corresponding to the case when Δ is infinite cyclic.

Nous établissons que, pour tout groupe dénombrable abélien Γ et tout sous-groupe finiment engendré Δ de Γ, l’ensemble des actions de Δ sur un espace de probabilités standard (X,μ) qui peuvent être étendues en une action libre de Γ sur (X,μ) est générique (au sens de Baire). Ce résultat étend un théorème d’Ageev, qui correspond au cas où Δ est un groupe cyclique infini.

DOI: 10.5802/aif.2859
Classification: 22F10, 54H05, 54E52
Keywords: Measure-preserving action, Baire category, Polish group
Mot clés : action préservant une mesure de probabilité, méthodes de Baire, groupe polonais
Melleray, Julien 1

1 Université de Lyon CNRS UMR 5208 Institut Camille Jordan 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex (France)
@article{AIF_2014__64_2_607_0,
     author = {Melleray, Julien},
     title = {Extensions of generic measure-preserving actions},
     journal = {Annales de l'Institut Fourier},
     pages = {607--623},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {2},
     year = {2014},
     doi = {10.5802/aif.2859},
     zbl = {06387286},
     mrnumber = {3330916},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2859/}
}
TY  - JOUR
AU  - Melleray, Julien
TI  - Extensions of generic measure-preserving actions
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 607
EP  - 623
VL  - 64
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2859/
DO  - 10.5802/aif.2859
LA  - en
ID  - AIF_2014__64_2_607_0
ER  - 
%0 Journal Article
%A Melleray, Julien
%T Extensions of generic measure-preserving actions
%J Annales de l'Institut Fourier
%D 2014
%P 607-623
%V 64
%N 2
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2859/
%R 10.5802/aif.2859
%G en
%F AIF_2014__64_2_607_0
Melleray, Julien. Extensions of generic measure-preserving actions. Annales de l'Institut Fourier, Volume 64 (2014) no. 2, pp. 607-623. doi : 10.5802/aif.2859. http://www.numdam.org/articles/10.5802/aif.2859/

[1] Ageev, O. N. Conjugacy of a group action to its inverse, Mat. Zametki, Volume 45 (1989) no. 3, p. 3-11, 127 | MR | Zbl

[2] Ageev, O. N. The generic automorphism of a Lebesgue space conjugate to a G-extension for any finite abelian group G, Dokl. Akad. Nauk, Volume 374 (2000) no. 4, pp. 439-442 | MR | Zbl

[3] Ageev, O. N. On the genericity of some nonasymptotic dynamic properties, Uspekhi Mat. Nauk, Volume 58 (2003) no. 1(349), pp. 177-178 | MR | Zbl

[4] Akcoglu, M. A.; Chacon, R. V.; Schwartzbauer, T. Commuting transformations and mixing, Proc. Amer. Math. Soc., Volume 24 (1970), pp. 637-642 | DOI | MR | Zbl

[5] Chacon, R. V.; Schwartzbauer, T. Commuting point transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 11 (1969), pp. 277-287 | DOI | MR | Zbl

[6] Foreman, Matthew; Weiss, Benjamin An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc. (JEMS), Volume 6 (2004) no. 3, pp. 277-292 | DOI | MR | Zbl

[7] Gao, Su Invariant descriptive set theory, Pure and Applied Mathematics (Boca Raton), 293, CRC Press, Boca Raton, FL, 2009, pp. xiv+383 | MR | Zbl

[8] Glasner, E.; Thouvenot, J.-P.; Weiss, B. Every countable group has the weak Rohlin property, Bull. London Math. Soc., Volume 38 (2006) no. 6, pp. 932-936 | DOI | MR | Zbl

[9] Glasner, Eli; King, Jonathan L. A zero-one law for dynamical properties, Topological dynamics and applications (Minneapolis, MN, 1995) (Contemp. Math.), Volume 215, Amer. Math. Soc., Providence, RI, 1998, pp. 231-242 | MR | Zbl

[10] Hirsch, K.A. On infinite soluble groups. IV., J. Lond. Math. Soc., Volume 27 (1952), pp. 81-85 | DOI | MR | Zbl

[11] Kechris, Alexander S. Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995, pp. xviii+402 | MR | Zbl

[12] Kechris, Alexander S. Global aspects of ergodic group actions, Mathematical Surveys and Monographs, 160, American Mathematical Society, Providence, RI, 2010, pp. xii+237 | MR | Zbl

[13] King, Jonathan The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory Dynam. Systems, Volume 6 (1986) no. 3, pp. 363-384 | DOI | MR | Zbl

[14] King, Jonathan L. F. The generic transformation has roots of all orders, Colloq. Math., Volume 84/85 (2000) no. part 2, pp. 521-547 (Dedicated to the memory of Anzelm Iwanik) | MR | Zbl

[15] Melleray, Julien; Tsankov, Todor Generic representations of abelian groups and extreme amenability (2011) (To appear in Isr. J. Math, preprint available at http://front.math.ucdavis.edu/1107.1698 , Disponible “Online first”, DOI 10.1007/s11856-013-0036-5) | MR | Zbl

[16] Robinson, Derek J. S. A course in the theory of groups, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996, pp. xviii+499 | MR | Zbl

[17] de la Rue, Thierry; de Sam Lazaro, José Une transformation générique peut être insérée dans un flot, Ann. Inst. H. Poincaré Probab. Statist., Volume 39 (2003) no. 1, pp. 121-134 | Numdam | MR | Zbl

[18] Solecki, Sławomir Closed subgroups generated by generic measure automorphisms (2012) (to appear in Ergodic Theory and Dynamical Systems, preprint available at http://www.math.uiuc.edu/~ssolecki/papers/gen_meas_aut_fin2.pdf) | MR

[19] Stepin, A. M.; Eremenko, A. M. Nonuniqueness of an inclusion in a flow and the vastness of a centralizer for a generic measure-preserving transformation, Mat. Sb., Volume 195 (2004) no. 12, pp. 95-108 | MR | Zbl

[20] Tikhonov, S. V. Embeddings of lattice actions in flows with multidimensional time, Mat. Sb., Volume 197 (2006) no. 1, pp. 97-132 | MR | Zbl

Cited by Sources: