In this work we compute the Chen–Ruan cohomology of the moduli spaces of smooth and stable -pointed curves of genus . In the first part of the paper we study and describe stack theoretically the twisted sectors of and . In the second part, we study the orbifold intersection theory of . We suggest a definition for an orbifold tautological ring in genus , which is a subring of both the Chen–Ruan cohomology and of the stringy Chow ring.
Dans ce travail on calcule la cohomologie de Chen–Ruan de l’espace de modules des courbes lisses et stables de genre avec points marqués. Dans la première partie on étudie et on décrit les secteurs tordus de et , en tant que champs.
Dans la deuxième partie, on étudie la théorie d’intersection orbifold de . On donne une définition possible de l’anneau tautologique orbifold en genre , comme sous-anneau simultanément de la cohomologie de Chen–Ruan et de l’anneau de Chow orbifold.
Keywords: moduli spaces, Gromov-Witten, orbifold, cohomology, tautological ring
Mot clés : espaces de modules, Gromov-Witten, orbifold, cohomologie, anneau tautologique
@article{AIF_2013__63_4_1469_0, author = {Pagani, Nicola}, title = {Chen{\textendash}Ruan {Cohomology} of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$}, journal = {Annales de l'Institut Fourier}, pages = {1469--1509}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {4}, year = {2013}, doi = {10.5802/aif.2808}, zbl = {06359594}, mrnumber = {3137360}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2808/} }
TY - JOUR AU - Pagani, Nicola TI - Chen–Ruan Cohomology of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$ JO - Annales de l'Institut Fourier PY - 2013 SP - 1469 EP - 1509 VL - 63 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2808/ DO - 10.5802/aif.2808 LA - en ID - AIF_2013__63_4_1469_0 ER -
%0 Journal Article %A Pagani, Nicola %T Chen–Ruan Cohomology of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$ %J Annales de l'Institut Fourier %D 2013 %P 1469-1509 %V 63 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2808/ %R 10.5802/aif.2808 %G en %F AIF_2013__63_4_1469_0
Pagani, Nicola. Chen–Ruan Cohomology of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$. Annales de l'Institut Fourier, Volume 63 (2013) no. 4, pp. 1469-1509. doi : 10.5802/aif.2808. http://www.numdam.org/articles/10.5802/aif.2808/
[1] Algebraic orbifold quantum products, Orbifolds in mathematics and physics (Madison, WI, 2001) (Contemp. Math.), Volume 310, Amer. Math. Soc., Providence, RI, 2002, pp. 1-24 | MR | Zbl
[2] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math., Volume 130 (2008) no. 5, pp. 1337-1398 | DOI | MR | Zbl
[3] Orbifolds and stringy topology, Cambridge Tracts in Mathematics, 171, Cambridge University Press, Cambridge, 2007 | MR | Zbl
[4] Chow Rings of moduli spaces of pointed elliptic curves, Chicago (1998) (Ph. D. Thesis) | MR
[5] On the classification of -gerbes and -stacks, Astérisque, 1994 no. 225 (160 pp) | Numdam | MR | Zbl
[6] A new cohomology theory of orbifold, Comm. Math. Phys., Volume 248 (2004) no. 1, pp. 1-31 | DOI | MR | Zbl
[7] A first course in modular forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005 | MR | Zbl
[8] Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS), Volume 7 (2005) no. 1, pp. 13-49 | DOI | EuDML | MR | Zbl
[9] Orbifold cohomology for global quotients, Duke Math. J., Volume 117 (2003) no. 2, pp. 197-227 | DOI | MR | Zbl
[10] Intersection Theory, Springer-Verlag, Berlin, 1984 | MR | Zbl
[11] Operads and moduli of genus 0 Riemann surfaces, The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser Boston, Boston, MA, 1995, pp. 199-230 | MR
[12] Intersection theory on and elliptic Gromov-Witten invariants, J. Amer. Math. Soc., Volume 10 (1997) no. 4, pp. 973-998 | DOI | MR | Zbl
[13] The semi-classical approximation for modular operads, Comm. Math. Phys., Volume 194 (1998) no. 2, pp. 481-492 | DOI | MR | Zbl
[14] Cohomologie non abélienne (French), Die Grundlehren der mathematischen Wissenschaften, Band, 179, Springer-Verlag, Berlin-New York, 1971 | MR | Zbl
[15] Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J., Volume 51 (2003) no. 1, pp. 93-109 | DOI | MR | Zbl
[16] Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., Volume 130 (2005) no. 1, pp. 1-37 | DOI | MR | Zbl
[17] Intersection theory of moduli space of stable -pointed curves of genus zero, Trans. Amer. Math. Soc., Volume 330 (1992) no. 2, pp. 545-574 | MR | Zbl
[18] Orbifold quantum cohomology of weighted projective spaces, J. Algebraic Geom., Volume 17 (2008) no. 1, pp. 137-166 | DOI | MR | Zbl
[19] Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry Vol II (Progr. Math.), Volume 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271-328 | MR | Zbl
[20] Chen–Ruan cohomology of moduli of curves, SISSA (Trieste) (2009) (Ph. D. Thesis)
[21] The Chen-Ruan cohomology of moduli of curves of genus 2 with marked points, Adv. Math., Volume 229 (2012) no. 3, pp. 1643-1687 | DOI | MR | Zbl
[22] The orbifold cohomology of moduli of hyperelliptic curves, Int. Math. Res. Not. IMRN (2012) no. 10, pp. 2163-2178 | MR | Zbl
[23] The orbifold cohomology of moduli of genus curves (http://arxiv.org/abs/1103.0151)
[24] The structure of the tautological ring in genus (http://arxiv.org/abs/1205.1586v1)
[25] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1992 | MR | Zbl
[26] The stringy Chow ring of the moduli stack of genus-two curves and its Deligne-Mumford compactification, Boston (2004) (Ph. D. Thesis) | MR
[27] The orbifold cohomology of the moduli of genus-two curves, Gromov-Witten theory of spin curves and orbifolds (Contemp. Math.), Volume 403, Amer. Math. Soc., Providence, RI, 2006, pp. 167-184 | MR | Zbl
[28] Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., Volume 97 (1989) no. 3, pp. 613-670 | DOI | MR | Zbl
Cited by Sources: