Degeneracy of entire curves in log surfaces with q ¯=2
Annales de l'Institut Fourier, Volume 61 (2011) no. 4, pp. 1517-1537.

We determine which algebraic surface of logarithmic irregularity 2 admit an algebraically non-degenerate entire curve.

Nous déterminons les surfaces algébriques d’irregularité logarithmique 2 qui admettent des courbes entières non-dégénérées.

DOI: 10.5802/aif.2649
Classification: 32H25, 32H30
Keywords: Entire curve, holomorphic map, logarithmic irregularity, complex surface
Mot clés : courbe entière, irrégularité logarithmique, surface complexe
Winkelmann, Jörg 1

1 Rhur-Universität Bochum Mathematisches Institut Lehrstuhl Analysis II NA 4/73 44780 Bochum (Germany)
@article{AIF_2011__61_4_1517_0,
     author = {Winkelmann, J\"org},
     title = {Degeneracy of entire curves in log surfaces with $\bar{q}=2$},
     journal = {Annales de l'Institut Fourier},
     pages = {1517--1537},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {4},
     year = {2011},
     doi = {10.5802/aif.2649},
     zbl = {1250.32016},
     mrnumber = {2951502},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2649/}
}
TY  - JOUR
AU  - Winkelmann, Jörg
TI  - Degeneracy of entire curves in log surfaces with $\bar{q}=2$
JO  - Annales de l'Institut Fourier
PY  - 2011
SP  - 1517
EP  - 1537
VL  - 61
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2649/
DO  - 10.5802/aif.2649
LA  - en
ID  - AIF_2011__61_4_1517_0
ER  - 
%0 Journal Article
%A Winkelmann, Jörg
%T Degeneracy of entire curves in log surfaces with $\bar{q}=2$
%J Annales de l'Institut Fourier
%D 2011
%P 1517-1537
%V 61
%N 4
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2649/
%R 10.5802/aif.2649
%G en
%F AIF_2011__61_4_1517_0
Winkelmann, Jörg. Degeneracy of entire curves in log surfaces with $\bar{q}=2$. Annales de l'Institut Fourier, Volume 61 (2011) no. 4, pp. 1517-1537. doi : 10.5802/aif.2649. http://www.numdam.org/articles/10.5802/aif.2649/

[1] Brody, Robert Compact manifolds in hyperbolicity, Trans. Amer. Math. Soc., Volume 235 (1978), pp. 213-219 | MR | Zbl

[2] Buzzard, Gregery T.; Lu, Steven S.-Y. Double sections, dominating maps, and the Jacobian fibration, Amer. J. Math., Volume 122 (2000) no. 5, pp. 1061-1084 | DOI | MR | Zbl

[3] Campana, F Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes (2008) (arxiv:0705.0737) | MR

[4] Dethloff, Gerd; Lu, Steven S.-Y. Logarithmic surfaces and hyperbolicity, Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 5, pp. 1575-1610 | DOI | Numdam | MR | Zbl

[5] Faltings, G. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983) no. 3, pp. 349-366 | DOI | MR | Zbl

[6] Hassett, Brendan; Tschinkel, Yuri Density of integral points on algebraic varieties, Rational points on algebraic varieties (Progr. Math.), Volume 199, Birkhäuser, Basel, 2001, pp. 169-197 | MR | Zbl

[7] Kawamata, Yujiro Characterization of abelian varieties, Compositio Math., Volume 43 (1981) no. 2, pp. 253-276 | Numdam | MR | Zbl

[8] Kobayashi, Shoshichi Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 318, Springer-Verlag, Berlin, 1998 | MR | Zbl

[9] Noguchi, Junjiro Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties, Nagoya Math. J., Volume 83 (1981), pp. 213-233 | MR | Zbl

[10] Noguchi, Junjiro; Winkelmann, Jörg; Yamanoi, Katsutoshi Degeneracy of holomorphic curves into algebraic varieties, J. Math. Pures Appl. (9), Volume 88 (2007) no. 3, pp. 293-306 | MR | Zbl

[11] Noguchi, Junjiro; Winkelmann, Jörg; Yamanoi, Katsutoshi The second main theorem for holomorphic curves into semi-abelian varieties. II, Forum Math., Volume 20 (2008) no. 3, pp. 469-503 | DOI | MR | Zbl

[12] Vojta, Paul Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, 1239, Springer-Verlag, Berlin, 1987 | MR | Zbl

[13] Vojta, Paul Integral points on subvarieties of semiabelian varieties. I, Invent. Math., Volume 126 (1996) no. 1, pp. 133-181 | DOI | MR | Zbl

[14] Vojta, Paul Integral points on subvarieties of semiabelian varieties. II, Amer. J. Math., Volume 121 (1999) no. 2, pp. 283-313 | DOI | MR | Zbl

[15] Winkelmann, Jörg On a special class of complex tori, J. Lie Theory, Volume 16 (2006) no. 1, pp. 93-95 | MR | Zbl

[16] Winkelmann, Jörg On Brody and entire curves, Bull. Soc. Math. France, Volume 135 (2007) no. 1, pp. 25-46 | Numdam | MR | Zbl

Cited by Sources: