Geometric Invariant Theory and Generalized Eigenvalue Problem II
Annales de l'Institut Fourier, Volume 61 (2011) no. 4, pp. 1467-1491.

Let G be a connected reductive subgroup of a complex connected reductive group G ^. Fix maximal tori and Borel subgroups of G and G ^. Consider the cone (G,G ^) generated by the pairs (ν,ν ^) of strictly dominant characters such that V ν * is a submodule of V ν ^ . We obtain a bijective parametrization of the faces of (G,G ^) as a consequence of general results on GIT-cones. We show how to read the inclusion of faces off this parametrization.

Soit G un sous-groupe fermé réductif et connexe d’un groupe réductif complexe et connexe G ^. On fixe des tores maximaux et des sous-groupes de Borel de G et G ^. De cette manière les représentations irréductibles de G et G ^ sont paramétrées par des poids dominants. On s’intéresse au cône R (G,G ^) engendré par les paires (ν,ν ^) de poids dominants réguliers tels que V ν * est un sous-G-module de V ν ^ . Nous obtenons ici une paramétrisation bijective des faces de R (G,G ^), en étudiant plus généralement les GIT-cônes des G-variétés projectives. Nous montrons aussi comment les relations d’inclusions entre les faces de R (G,G ^) se lisent sur notre paramétrisation.

DOI: 10.5802/aif.2647
Classification: 20G05, 14L24
Keywords: Branching rule, generalized Horn problem, Littlewood-Richardson cone, GIT-cone
Keywords: problème de restriction, problème de Horn et ses généralisations, cône de Littlewood-Richardson, GIT- cône
Ressayre, Nicolas 1

1 Université Montpellier II Département de Mathématiques Case courrier 051 - Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)
@article{AIF_2011__61_4_1467_0,
     author = {Ressayre, Nicolas},
     title = {Geometric {Invariant} {Theory} and {Generalized} {Eigenvalue} {Problem} {II}},
     journal = {Annales de l'Institut Fourier},
     pages = {1467--1491},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {4},
     year = {2011},
     doi = {10.5802/aif.2647},
     zbl = {1245.14045},
     mrnumber = {2951500},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2647/}
}
TY  - JOUR
AU  - Ressayre, Nicolas
TI  - Geometric Invariant Theory and Generalized Eigenvalue Problem II
JO  - Annales de l'Institut Fourier
PY  - 2011
SP  - 1467
EP  - 1491
VL  - 61
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2647/
DO  - 10.5802/aif.2647
LA  - en
ID  - AIF_2011__61_4_1467_0
ER  - 
%0 Journal Article
%A Ressayre, Nicolas
%T Geometric Invariant Theory and Generalized Eigenvalue Problem II
%J Annales de l'Institut Fourier
%D 2011
%P 1467-1491
%V 61
%N 4
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2647/
%R 10.5802/aif.2647
%G en
%F AIF_2011__61_4_1467_0
Ressayre, Nicolas. Geometric Invariant Theory and Generalized Eigenvalue Problem II. Annales de l'Institut Fourier, Volume 61 (2011) no. 4, pp. 1467-1491. doi : 10.5802/aif.2647. http://www.numdam.org/articles/10.5802/aif.2647/

[1] Belkale, Prakash Geometric proof of a conjecture of Fulton, Adv. Math., Volume 216 (2007) no. 1, pp. 346-357 | DOI | MR | Zbl

[2] Belkale, Prakash; Kumar, Shrawan Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math., Volume 166 (2006) no. 1, pp. 185-228 | DOI | MR | Zbl

[3] Berenstein, Arkady; Sjamaar, Reyer Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc., Volume 13 (2000) no. 2, pp. 433-466 | DOI | MR | Zbl

[4] Brion, Michel On the general faces of the moment polytope, Internat. Math. Res. Notices (1999) no. 4, pp. 185-201 | DOI | MR | Zbl

[5] Dolgachev, Igor V.; Hu, Yi Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math., Volume 87 (1998), pp. 5-56 (With an appendix by Nicolas Ressayre) | DOI | MR | Zbl

[6] Horn, Alfred Eigenvalues of sums of Hermitian matrices, Pacific J. Math., Volume 12 (1962), pp. 225-241 | MR | Zbl

[7] Knutson, Allen; Tao, Terence; Woodward, Christopher The honeycomb model of GL n () tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc., Volume 17 (2004) no. 1, pp. 19-48 | DOI | MR | Zbl

[8] Luna, D. Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, p. 81-105. Bull. Soc. Math. France, Paris, Mémoire 33 | Numdam | MR | Zbl

[9] Luna, D. Adhérences d’orbite et invariants, Invent. Math., Volume 29 (1975) no. 3, pp. 231-238 | DOI | MR | Zbl

[10] Luna, D.; Richardson, R. W. A generalization of the Chevalley restriction theorem, Duke Math. J., Volume 46 (1979) no. 3, pp. 487-496 | DOI | MR | Zbl

[11] Mumford, D.; Fogarty, J.; Kirwan, F. Geometric Invariant Theory, Springer Verlag, New York, 1994 | MR | Zbl

[12] Popov, V. L.; Vinberg, È. B.; Parshin, A.N.; Shafarevich, I.R. Algebraic Geometry IV, Invariant Theory (Encyclopedia of Mathematical Sciences), Volume 55, Springer-Verlag, 1991, pp. 123-284

[13] Ressayre, N. A short geometric proof of a conjecture of Fulton à paraître dans Enseign. Math. (2)

[14] Ressayre, N. The GIT-equivalence for G-line bundles, Geom. Dedicata, Volume 81 (2000) no. 1-3, pp. 295-324 | DOI | MR | Zbl

[15] Ressayre, N. Geometric Invariant Theory and Generalized Eigenvalue Problem, Invent. Math., Volume 180 (2010), pp. 389-441 | DOI | MR | Zbl

[16] Sjamaar, Reyer Convexity properties of the moment mapping re-examined, Adv. Math., Volume 138 (1998) no. 1, pp. 46-91 | DOI | MR | Zbl

Cited by Sources: