The Evolution of the Weyl Tensor under the Ricci Flow
[L’évolution du tenseur de Weyl d’une variété par le flot de Ricci]
Annales de l'Institut Fourier, Tome 61 (2011) no. 4, pp. 1407-1435.

Nous calculons l’équation d’évolution du tenseur de Weyl d’une variété riemannienne par le flot de Ricci et nous discutons des conséquences pour la classification des solitons de Ricci localement conformément plats.

We compute the evolution equation of the Weyl tensor under the Ricci flow of a Riemannian manifold and we discuss some consequences for the classification of locally conformally flat Ricci solitons.

DOI : https://doi.org/10.5802/aif.2644
Classification : 53C21,  53C25
Mots clés : solitons de Ricci, singularités du flot de Ricci
@article{AIF_2011__61_4_1407_0,
     author = {Catino, Giovanni and Mantegazza, Carlo},
     title = {The {Evolution} of the {Weyl} {Tensor} under the {Ricci} {Flow}},
     journal = {Annales de l'Institut Fourier},
     pages = {1407--1435},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {4},
     year = {2011},
     doi = {10.5802/aif.2644},
     mrnumber = {2951497},
     zbl = {1255.53034},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2644/}
}
TY  - JOUR
AU  - Catino, Giovanni
AU  - Mantegazza, Carlo
TI  - The Evolution of the Weyl Tensor under the Ricci Flow
JO  - Annales de l'Institut Fourier
PY  - 2011
DA  - 2011///
SP  - 1407
EP  - 1435
VL  - 61
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2644/
UR  - https://www.ams.org/mathscinet-getitem?mr=2951497
UR  - https://zbmath.org/?q=an%3A1255.53034
UR  - https://doi.org/10.5802/aif.2644
DO  - 10.5802/aif.2644
LA  - en
ID  - AIF_2011__61_4_1407_0
ER  - 
Catino, Giovanni; Mantegazza, Carlo. The Evolution of the Weyl Tensor under the Ricci Flow. Annales de l'Institut Fourier, Tome 61 (2011) no. 4, pp. 1407-1435. doi : 10.5802/aif.2644. http://www.numdam.org/articles/10.5802/aif.2644/

[1] Baird, P.; Danielo, L. Three–dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math., Volume 608 (2007), pp. 65-91 | Article | MR 2339469 | Zbl 1128.53020

[2] Besse, A. L. Einstein manifolds, Springer–Verlag, Berlin, 2008 | MR 2371700 | Zbl 0613.53001

[3] Böhm, C.; Wilking, B. Manifolds with positive curvature operators are space forms, Ann. of Math. (2), Volume 167 (2008) no. 3, pp. 1079-1097 | Article | MR 2415394 | Zbl 1185.53073

[4] Brozos-Vázquez, M.; García-Río, E.; Vázquez-Lorenzo, R. Some remarks on locally conformally flat static space-times, J. Math. Phys., Volume 46 (2005) no. 2, pp. 022501, 11 | Article | MR 2121707 | Zbl 1076.53084

[5] Bryant, R. L. Local existence of gradient Ricci solitons (1987) (Unpublished work)

[6] Cao, H.-D.; Chen, Q. On locally conformally flat gradient steady Ricci solitons (2009) (ArXiv Preprint Server – http://arxiv.org)

[7] Cao, X.; Wang, B.; Zhang, Z. On locally conformally flat gradient shrinking Ricci solitons (2008) (ArXiv Preprint Server – http://arxiv.org)

[8] Chen, B.-L. Strong uniqueness of the Ricci flow, J. Diff. Geom., Volume 82 (2009), pp. 363-382 | MR 2520796 | Zbl 1177.53036

[9] Chow, B.; Chu, S.-C.; Glickenstein, D.; Guenther, C.; Isenberg, J.; Ivey, T.; Knopf, D.; Lu, P.; Luo, F.; Ni, L. The Ricci flow: techniques and applications. Part I. Geometric aspects, Mathematical Surveys and Monographs, 135, American Mathematical Society, Providence, RI, 2007 | MR 2302600 | Zbl 1216.53057

[10] Chow, B.; Chu, S.-C.; Glickenstein, D.; Guenther, C.; Isenberg, J.; Ivey, T.; Knopf, D.; Lu, P.; Luo, F.; Ni, L. The Ricci flow: techniques and applications. Part II. Analytic aspects, Mathematical Surveys and Monographs, 144, American Mathematical Society, Providence, RI, 2008 | MR 2365237 | Zbl 1216.53057

[11] Chow, B.; Lu, P.; Ni, L. Hamilton’s Ricci flow, Graduate Studies in Mathematics, 77, American Mathematical Society, Providence, RI, 2006 | Zbl 1118.53001

[12] Derdzinski, A. Some remarks on the local structure of Codazzi tensors, Global differential geometry and global analysis (Berlin, 1979) (Lect. Notes in Math.), Volume 838, Springer–Verlag, Berlin, 1981, pp. 243-299 | Zbl 0437.53012

[13] Eminenti, M.; Nave, G. La; Mantegazza, C. Ricci solitons: the equation point of view, Manuscripta Math., Volume 127 (2008) no. 3, pp. 345-367 | Article | MR 2448435 | Zbl 1160.53031

[14] Fernández–López, M.; García–Río, E. Rigidity of shrinking Ricci solitons (2009) (preprint) | Zbl 1226.53047

[15] Gallot, S.; Hulin, D.; Lafontaine, J. Riemannian geometry, Springer–Verlag, 1990 | MR 1083149 | Zbl 0716.53001

[16] Hamilton, R. S. Three–manifolds with positive Ricci curvature, J. Diff. Geom., Volume 17 (1982) no. 2, pp. 255-306 | MR 664497 | Zbl 0504.53034

[17] Hamilton, R. S. Four–manifolds with positive curvature operator, J. Diff. Geom., Volume 24 (1986) no. 2, pp. 153-179 | MR 862046 | Zbl 0628.53042

[18] Hamilton, R. S. Eternal solutions to the Ricci flow, J. Diff. Geom., Volume 38 (1993) no. 1, pp. 1-11 | MR 1231700 | Zbl 0792.53041

[19] Hamilton, R. S. A compactness property for solutions of the Ricci flow, Amer. J. Math., Volume 117 (1995) no. 3, pp. 545-572 | Article | MR 1333936 | Zbl 0840.53029

[20] Hamilton, R. S. The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, pp. 7-136 | MR 1375255 | Zbl 0867.53030

[21] Hiepko, S. Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann., Volume 241 (1979) no. 3, pp. 209-215 | Article | EuDML 163263 | MR 535555 | Zbl 0387.53014

[22] Hiepko, S.; Reckziegel, H. Über sphärische Blätterungen und die Vollständigkeit ihrer Blätter, Manuscripta Math., Volume 31 (1980) no. 1–3, pp. 269-283 | Article | EuDML 154706 | MR 576500 | Zbl 0441.53035

[23] Kotschwar, B. On rotationally invariant shrinking Ricci solitons, Pacific J. Math., Volume 236 (2008) no. 1, pp. 73-88 | Article | MR 2398988 | Zbl 1152.53056

[24] Ma, L.; Cheng, L. On the conditions to control curvature tensors or Ricci flow, Ann. Global Anal. Geom., Volume 37 (2010) no. 4, pp. 403-411 | Article | MR 2601499 | Zbl 1188.35033

[25] Munteanu, O.; Sesum, N. On gradient Ricci solitons (2009) (ArXiv Preprint Server – http://arxiv.org) | Zbl 1275.53061

[26] Naber, A. Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math, Volume 645 (2010), pp. 125-153 | Article | MR 2673425 | Zbl 1196.53041

[27] Ni, L.; Wallach, N. On a classification of gradient shrinking solitons, Math. Res. Lett., Volume 15 (2008) no. 5, pp. 941-955 | MR 2443993 | Zbl 1158.53052

[28] Perelman, G. The entropy formula for the Ricci flow and its geometric applications (2002) (ArXiv Preprint Server – http://arxiv.org) | Zbl 1130.53001

[29] Petersen, P.; Wylie, W. On the classification of gradient Ricci solitons (2007) (ArXiv Preprint Server – http://arxiv.org) | Zbl 1202.53049

[30] Petersen, P.; Wylie, W. Rigidity of gradient Ricci solitons, Pacific J. Math., Volume 241 (2009) no. 2, pp. 329-345 | Article | MR 2507581 | Zbl 1176.53048

[31] Sesum, N. Convergence of the Ricci flow toward a soliton, Comm. Anal. Geom., Volume 14 (2006) no. 2, pp. 283-343 | MR 2255013 | Zbl 1106.53045

[32] Tojeiro, R. Conformal de Rham decomposition of Riemannian manifolds, Houston J. Math., Volume 32 (2006) no. 3, p. 725-743 (electronic) | MR 2247906 | Zbl 1116.53044

[33] Zhang, Z.-H. Gradient shrinking solitons with vanishing Weyl tensor, Pacific J. Math., Volume 242 (2009) no. 1, pp. 189-200 | Article | MR 2525510 | Zbl 1171.53332

[34] Zhang, Z.-H. On the completeness of gradient Ricci solitons, Proc. Amer. Math. Soc., Volume 137 (2009) no. 8, pp. 2755-2759 | Article | MR 2497489 | Zbl 1176.53046

Cité par Sources :