We consider the decomposition of a compact-type symmetric space into a product of factors and show that the rank-one factors, when considered as totally geodesic submanifolds of the space, are isolated from inequivalent minimal submanifolds.
Nous considérons la décomposition d’un espace symétrique de type compact et nous montrons que les facteurs de rang 1, considérés comme sous-variétés de cet espace, sont isolés de toutes les sous-variétés minimales inéquivalentes.
Keywords: Minimal submanifolds, rigidity, symmetric spaces.
Mot clés : sous-varietés minimales, rigidité, espaces symétriques.
@article{AIF_2011__61_2_491_0, author = { Clarke, Andrew}, title = {Rigidity of {Rank-One} {Factors} of {Compact} {Symmetric} {Spaces}}, journal = {Annales de l'Institut Fourier}, pages = {491--509}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {2}, year = {2011}, doi = {10.5802/aif.2621}, zbl = {1231.53044}, mrnumber = {2895065}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2621/} }
TY - JOUR AU - Clarke, Andrew TI - Rigidity of Rank-One Factors of Compact Symmetric Spaces JO - Annales de l'Institut Fourier PY - 2011 SP - 491 EP - 509 VL - 61 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2621/ DO - 10.5802/aif.2621 LA - en ID - AIF_2011__61_2_491_0 ER -
%0 Journal Article %A Clarke, Andrew %T Rigidity of Rank-One Factors of Compact Symmetric Spaces %J Annales de l'Institut Fourier %D 2011 %P 491-509 %V 61 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2621/ %R 10.5802/aif.2621 %G en %F AIF_2011__61_2_491_0
Clarke, Andrew. Rigidity of Rank-One Factors of Compact Symmetric Spaces. Annales de l'Institut Fourier, Volume 61 (2011) no. 2, pp. 491-509. doi : 10.5802/aif.2621. http://www.numdam.org/articles/10.5802/aif.2621/
[1] An extrinsic rigidity theorem for minimal immersions of into , J. Diff. Geom., Volume 14 (1979), pp. 355-368 | MR | Zbl
[2] Riemannian Symmetric Spaces of Rank One, Marcel Dekker Inc., New York, 1972 | MR | Zbl
[3] Minimal submanifolds of the sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer Verlag, 1970 | MR | Zbl
[4] Some rigidity theorems for minimal submanifolds of the sphere, Acta Math., Volume 145 (1980), pp. 29-46 | DOI | MR | Zbl
[5] Calibrated geometries in Grassmann manifolds, Comment Math. Helv., Volume 64 (1989), pp. 256-268 | DOI | MR | Zbl
[6] Examples of codimension-one closed minimal submanifolds in some symmetric spaces. I., J. Diff. Geom., Volume 15 (1980), pp. 543-551 | MR | Zbl
[7] Foundations of Differential Geometry, 2, Interscience, New York, 1969 | Zbl
[8] Complete minimal surfaces in , Ann. of Math., Volume 92 (1970), pp. 335-374 | DOI | MR | Zbl
[9] Rigidity theorems in rank-1 symmetric spaces, J. Diff. Geom., Volume 4 (1970), pp. 349-357 | MR | Zbl
[10] Geometric Superrigidity, J. Diff. Geom., Volume 113 (1993) no. 1, pp. 57-83 | MR | Zbl
[11] Lecture Notes on Geometric Measure Theory, Australian National University, 1983
[12] Minimal varieties in riemannian manifolds, Ann. Math., Volume 88 (1968), pp. 65-105 | DOI | MR | Zbl
[13] Minimal real currents on compact riemannian manifolds, Math. USSR Izv., Volume 11 (1970), pp. 807-820 | DOI | Zbl
Cited by Sources: