Rigidity and L 2 cohomology of hyperbolic manifolds
Annales de l'Institut Fourier, Volume 60 (2010) no. 7, pp. 2307-2331.

When X=Γ n is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of L 2 harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results.

La petitesse de l’exposant critique du groupe fondamental d’une variété hyperbolique implique des résultats d’annulation pour certains espaces de cohomologie et de formes harmoniques L 2 . Nous obtenons ici des résultats de rigidité reliés à ces théorèmes d’annulations. Ceci est une généralisation de résultats déjà connus dans le cas convexe co-compact.

DOI: 10.5802/aif.2608
Classification: 58J50, 22E40
Keywords: $L^2$ harmonic form, hyperbolic manifold, critical exponent
Mot clés : formes harmoniques $L^2$, variété hyperbolique, exposant critique
Carron, Gilles 1

1 Université de Nantes Laboratoire de mathématiques Jean Leray 2, rue de la Houssinière BP 92208 44322 Nantes cedex 03 (France)
@article{AIF_2010__60_7_2307_0,
     author = {Carron, Gilles},
     title = {Rigidity and $L^2$ cohomology  of hyperbolic manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {2307--2331},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {7},
     year = {2010},
     doi = {10.5802/aif.2608},
     zbl = {1236.53040},
     mrnumber = {2848671},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2608/}
}
TY  - JOUR
AU  - Carron, Gilles
TI  - Rigidity and $L^2$ cohomology  of hyperbolic manifolds
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 2307
EP  - 2331
VL  - 60
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2608/
DO  - 10.5802/aif.2608
LA  - en
ID  - AIF_2010__60_7_2307_0
ER  - 
%0 Journal Article
%A Carron, Gilles
%T Rigidity and $L^2$ cohomology  of hyperbolic manifolds
%J Annales de l'Institut Fourier
%D 2010
%P 2307-2331
%V 60
%N 7
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2608/
%R 10.5802/aif.2608
%G en
%F AIF_2010__60_7_2307_0
Carron, Gilles. Rigidity and $L^2$ cohomology  of hyperbolic manifolds. Annales de l'Institut Fourier, Volume 60 (2010) no. 7, pp. 2307-2331. doi : 10.5802/aif.2608. http://www.numdam.org/articles/10.5802/aif.2608/

[1] Anderson, Michael T. L 2 harmonic forms on complete Riemannian manifolds, Geometry and analysis on manifolds (Katata/Kyoto, 1987) (Lecture Notes in Math.), Volume 1339, Springer, Berlin, 1988, pp. 1-19 | DOI | MR | Zbl

[2] Benedetti, Riccardo; Petronio, Carlo Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992 | MR | Zbl

[3] Besson, Gérard; Courtois, Gilles; Gallot, Sylvestre Lemme de Schwarz réel et applications géométriques, Acta Math., Volume 183 (1999) no. 2, pp. 145-169 | DOI | MR | Zbl

[4] Besson, Gérard; Courtois, Gilles; Gallot, Sylvestre Hyperbolic manifolds, amalgamated products and critical exponents, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 3, pp. 257-261 | DOI | MR | Zbl

[5] Besson, Gérard; Courtois, Gilles; Gallot, Sylvestre Rigidity of amalgamated products in negative curvature, J. Differential Geom., Volume 79 (2008) no. 3, pp. 335-387 http://projecteuclid.org/getRecord?id=euclid.jdg/1213798182 | MR | Zbl

[6] Bishop, Christopher J.; Jones, Peter W. Hausdorff dimension and Kleinian groups, Acta Math., Volume 179 (1997) no. 1, pp. 1-39 | DOI | MR | Zbl

[7] Bourdon, Marc Sur le birapport au bord des CAT (-1)-espaces, Inst. Hautes Études Sci. Publ. Math. (1996) no. 83, pp. 95-104 | DOI | Numdam | MR | Zbl

[8] Bourguignon, Jean-Pierre The “magic” of Weitzenböck formulas, Variational methods (Paris, 1988) (Progr. Nonlinear Differential Equations Appl.), Volume 4, Birkhäuser Boston, Boston, MA, 1990, pp. 251-271 | MR | Zbl

[9] Bowen, Rufus Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. (1979) no. 50, pp. 11-25 | DOI | Numdam | MR | Zbl

[10] Branson, T. Kato constants in Riemannian geometry, Math. Res. Lett., Volume 7 (2000) no. 2-3, pp. 245-261 | MR | Zbl

[11] Calderbank, David M. J.; Gauduchon, Paul; Herzlich, Marc Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal., Volume 173 (2000) no. 1, pp. 214-255 | DOI | MR | Zbl

[12] Carron, Gilles; Pedon, Emmanuel On the differential form spectrum of hyperbolic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 3 (2004) no. 4, pp. 705-747 | Numdam | MR | Zbl

[13] Izeki, Hiroyasu Limit sets of Kleinian groups and conformally flat Riemannian manifolds, Invent. Math., Volume 122 (1995) no. 3, pp. 603-625 | DOI | MR | Zbl

[14] Izeki, Hiroyasu; Nayatani, Shin Canonical metric on the domain of discontinuity of a Kleinian group, Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 1997–1998 (Sémin. Théor. Spectr. Géom.), Volume 16, Univ. Grenoble I, Saint, 1997–1998, pp. 9-32 | Numdam | Zbl

[15] Kapovich, Michael Homological dimension and critical exponent of Kleinian groups, Geom. Funct. Anal., Volume 18 (2009) no. 6, pp. 2017-2054 | DOI | MR | Zbl

[16] Li, Peter; Wang, Jiaping Complete manifolds with positive spectrum, J. Differential Geom., Volume 58 (2001) no. 3, pp. 501-534 http://projecteuclid.org/getRecord?id=euclid.jdg/1090348357 | MR | Zbl

[17] Mazzeo, Rafe The Hodge cohomology of a conformally compact metric, J. Differential Geom., Volume 28 (1988) no. 2, pp. 309-339 http://projecteuclid.org/getRecord?id=euclid.jdg/1214442281 | MR | Zbl

[18] Mazzeo, Rafe; Phillips, Ralph S. Hodge theory on hyperbolic manifolds, Duke Math. J., Volume 60 (1990) no. 2, pp. 509-559 | DOI | MR | Zbl

[19] Patterson, S. J. The limit set of a Fuchsian group, Acta Math., Volume 136 (1976) no. 3-4, pp. 241-273 | DOI | MR | Zbl

[20] Ratcliffe, John G. Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, 149, Springer-Verlag, New York, 1994 | MR | Zbl

[21] Shalom, Yehuda Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2), Volume 152 (2000) no. 1, pp. 113-182 | DOI | MR | Zbl

[22] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979) no. 50, pp. 171-202 | DOI | Numdam | MR | Zbl

[23] Sullivan, Dennis Related aspects of positivity in Riemannian geometry, J. Differential Geom., Volume 25 (1987) no. 3, pp. 327-351 http://projecteuclid.org/getRecord?id=euclid.jdg/1214440979 | MR | Zbl

[24] Wang, Xiaodong On conformally compact Einstein manifolds, Math. Res. Lett., Volume 8 (2001) no. 5-6, pp. 671-688 | MR | Zbl

[25] Wang, Xiaodong On the L 2 -cohomology of a convex cocompact hyperbolic manifold, Duke Math. J., Volume 115 (2002) no. 2, pp. 311-327 | DOI | MR

[26] Yeganefar, Nader Sur la L 2 -cohomologie des variétés à courbure négative, Duke Math. J., Volume 122 (2004) no. 1, pp. 145-180 | DOI | MR | Zbl

[27] Yue, Chengbo Dimension and rigidity of quasi-Fuchsian representations, Ann. of Math. (2), Volume 143 (1996) no. 2, pp. 331-355 | DOI | MR | Zbl

Cited by Sources: