The monodromy conjecture for zeta functions associated to ideals in dimension two
Annales de l'Institut Fourier, Volume 60 (2010) no. 4, pp. 1347-1362.

The monodromy conjecture states that every pole of the topological (or related) zeta function induces an eigenvalue of monodromy. This conjecture has already been studied a lot. However in full generality it is proven only for zeta functions associated to polynomials in two variables.

In this article we work with zeta functions associated to an ideal. First we work in arbitrary dimension and obtain a formula (like the one of A’Campo) to compute the “Verdier monodromy” eigenvalues associated to an ideal. Afterwards we prove a generalized monodromy conjecture for arbitrary ideals in two variables.

La conjecture de la monodromie prédit que chaque pôle de la fonction zêta topologique (ou analogue) induit une valeur propre de la monodromie. Cette conjecture a déjà beaucoup été étudiée ; toutefois elle est prouvée en général seulement pour des fonctions zêta associées à un polynôme en deux variables. Dans cet article nous traitons des fonctions zêta associées à un idéal. En dimension quelconque nous obtenons une formule (semblable à celle d’A’Campo) qui calcule les valeurs propres de la “monodromie de Verdier”. Pour des idéaux en deux variables, nous prouvons ensuite une conjecture généralisée de la monodromie.

DOI: 10.5802/aif.2557
Classification: 14E15,  32S40,  14H20
Keywords: Zeta functions for ideals, Verdier monodromy, monodromy conjecture
Van Proeyen, Lise 1; Veys, Willem 1

1 K.U. Leuven Departement Wiskunde Celestijnenlaan 200B 3001 Leuven (Belgium)
@article{AIF_2010__60_4_1347_0,
     author = {Van Proeyen, Lise and Veys, Willem},
     title = {The monodromy conjecture for zeta functions associated to ideals in dimension two},
     journal = {Annales de l'Institut Fourier},
     pages = {1347--1362},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {4},
     year = {2010},
     doi = {10.5802/aif.2557},
     mrnumber = {2722244},
     zbl = {1211.14021},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2557/}
}
TY  - JOUR
AU  - Van Proeyen, Lise
AU  - Veys, Willem
TI  - The monodromy conjecture for zeta functions associated to ideals in dimension two
JO  - Annales de l'Institut Fourier
PY  - 2010
DA  - 2010///
SP  - 1347
EP  - 1362
VL  - 60
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2557/
UR  - https://www.ams.org/mathscinet-getitem?mr=2722244
UR  - https://zbmath.org/?q=an%3A1211.14021
UR  - https://doi.org/10.5802/aif.2557
DO  - 10.5802/aif.2557
LA  - en
ID  - AIF_2010__60_4_1347_0
ER  - 
%0 Journal Article
%A Van Proeyen, Lise
%A Veys, Willem
%T The monodromy conjecture for zeta functions associated to ideals in dimension two
%J Annales de l'Institut Fourier
%D 2010
%P 1347-1362
%V 60
%N 4
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2557
%R 10.5802/aif.2557
%G en
%F AIF_2010__60_4_1347_0
Van Proeyen, Lise; Veys, Willem. The monodromy conjecture for zeta functions associated to ideals in dimension two. Annales de l'Institut Fourier, Volume 60 (2010) no. 4, pp. 1347-1362. doi : 10.5802/aif.2557. http://www.numdam.org/articles/10.5802/aif.2557/

[1] Abramovich, D.; Karu, K.; Matsuki, K.; Włodarczyk, J. Torification and factorization of birational maps, J. Amer. Math. Soc., Volume 15 (2002), pp. 531-572 | DOI | MR | Zbl

[2] A’Campo, N. La fonction zêta d’une monodromie, Comment. Math. Helv., Volume 50 (1975), pp. 233-248 | DOI | MR | Zbl

[3] Artal-Bartolo, E.; Cassou-Noguès, P.; Luengo, I.; Melle-Hernandez, A. Monodromy conjecture for some surface singularities, Ann. Scient. Ec. Norm. Sup., Volume 35 (2002), pp. 605-640 | Numdam | MR | Zbl

[4] Artal-Bartolo, E.; Cassou-Noguès, P.; Luengo, I.; Melle-Hernandez, A. Quasi-ordinary power series and their zeta functions, Mem. Amer. Math. Soc., Volume 178 (2005) no. 841, pp. 85p. | MR | Zbl

[5] Budur, N.; Mustaţǎ, M.; Saito, M. Bernstein-Sato polynomials of arbitrary varieties, Compos. Math., Volume 142 (2006) no. 3, pp. 779-797 | DOI | MR | Zbl

[6] Deligne, P. Le formalisme des cycles évanescents, SGA7 XIII and XIV, Lect. Notes in Math., Volume 340 (1973), p. 82-115 and 116–164 | Zbl

[7] Denef, J. Degree of local zeta functions and monodromy, Compos. Math., Volume 89 (1994), pp. 207-216 | Numdam | MR | Zbl

[8] Denef, J.; Loeser, F. Caractéristiques d’Euler-Poincaré, fonctions zêta locales, et modifications analytiques, J. Amer. Math. Soc., Volume 5 (1992), pp. 705-720 | MR | Zbl

[9] Denef, J.; Loeser, F. Motivic Igusa zeta functions, Journal of Algebraic Geometry, Volume 7 (1998), pp. 505-537 | MR | Zbl

[10] Dimca, A. Sheaves in topology, Springer-Verlag, Berlin Heidelberg, 2004 | MR | Zbl

[11] Eisenbud, D.; Harris, J. The Geometry of Schemes, Springer-Verlag, New York, 2000 | MR | Zbl

[12] Fulton, W. Intersection Theory, Springer-Verlag, Berlin Heidelberg, 1984 | MR | Zbl

[13] Gyoja, A. Bernstein-Sato’s polynomial for several analytic functions, J. Math. Kyoto Univ., Volume 33 (1993), pp. 399-411 | MR | Zbl

[14] Hartshorne, R. Algebraic Geometry, Springer-Verlag, New York, 1977 | MR | Zbl

[15] Howald, J.; Mustaţǎ, M.; Yuen, C. On Igusa zeta functions of monomial ideals, Proc. Amer. Math. Soc., Volume 135 (2007) no. 11, pp. 3425-3433 | DOI | MR | Zbl

[16] Igusa, J. An introduction to the theory of local zeta functions, Advanced Mathematics (2000) | Zbl

[17] Lemahieu, A.; Veys, W. On monodromy for a class of surfaces, C. R. Acad. Sci. Paris, Volume 345/11 (2007), pp. 633-638 | MR | Zbl

[18] Lemahieu, A.; Veys, W. Zeta functions and monodromy for surfaces that are general for a toric idealistic cluster, Intern. Math. Res. Notices, 2008 (doi: 10.1093/imrn/rnn122) | MR | Zbl

[19] Loeser, F. Fonctions d’Igusa p-adiques et polynômes de Bernstein, Amer. J. Math., Volume 110 (1988), pp. 1-21 | DOI | MR | Zbl

[20] Loeser, F. Fonctions d’Igusa p-adiques, polynômes de Bernstein, et polyèdres de Newton, J. Reine Angew. Math., Volume 412 (1990), pp. 75-96 | DOI | MR | Zbl

[21] Malgrange, B. Polynôme de Bernstein-Sato et cohomologie évanescente, Astérisque, Volume 101–102 (1983), pp. 243-267 | MR | Zbl

[22] Rodrigues, B. On the Monodromy Conjecture for curves on normal surfaces, Math. Proc. of the Cambridge Philosophical Society, Volume 136 (2004), pp. 313-324 | DOI | MR | Zbl

[23] Rodrigues, B.; Veys, W. Holomorphy of Igusa’s and topological zeta functions for homogeneous polynomials, Pacific J. Math., Volume 201 (2001), pp. 429-441 | DOI | MR | Zbl

[24] Sabbah, C. Proximité évanescante, I. La structure polaire d’un D-module, Compos. Math., Volume 62 (1987), pp. 283-328 II. Equations fonctionnelles pour plusieurs fonctions analytiques, 64 (1987), p. 213–241 | Numdam | MR | Zbl

[25] Van Proeyen, L.; Veys, W. Poles of the topological zeta function associated to an ideal in dimension two, Math. Z., Volume 260 (2008), pp. 615-627 | DOI | MR | Zbl

[26] Verdier, J.-L. Spécialisation de faisceaux et monodromie modérée, Astérisque, Volume 101–102 (1983), pp. 332-364 | MR | Zbl

[27] Veys, W. Poles of Igusa’s local zeta function and monodromy, Bull. Soc. Math. France, Volume 121 (1993), pp. 545-598 | Numdam | MR | Zbl

[28] Veys, W. Vanishing of principal value integrals on surfaces, J. Reine Angew. Math., Volume 598 (2006), pp. 139-158 | DOI | MR | Zbl

[29] Veys, W.; Zuniga-Galindo, W.A. Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 2205-2227 | DOI | MR

Cited by Sources: