Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture
Annales de l'Institut Fourier, Volume 59 (2009) no. 1, pp. 81-166.

Let k be a positive integer divisible by 4, p>k a prime, f an elliptic cuspidal eigenform (ordinary at p) of weight k-1, level 4 and non-trivial character. In this paper we provide evidence for the Bloch-Kato conjecture for the motives ad 0 M(-1) and ad 0 M(2), where M is the motif attached to f. More precisely, we prove that under certain conditions the p-adic valuation of the algebraic part of the symmetric square L-function of f evaluated at k provides a lower bound for the p-adic valuation of the order of the Pontryagin dual of the Selmer group for the adjoint of the p-adic Galois representation attached to f restricted to the Gaussian field and twisted by the inverse of the cyclotomic character. Our method uses an idea of Ribet, in that we introduce an intermediate step and produce congruences between CAP and non-CAP modular forms on the unitary group U(2,2).

Soit k un entier strictement positif divisible par 4, soit p>k un nombre premier, et soit f une forme modulaire elliptique de poids k-1, de niveau 4, et de caractère non trivial qui est propre pour les opérateurs de Hecke et ordinaire en p. Dans cet article, on donne des résultats sur la conjecture de Bloch-Kato pour les motifs ad 0 M(-1) et ad 0 M(2), où M est le motif associé à f. Plus précisément, on démontre que, sous certaines hypothèses, la valuation p-adique de la part algébrique de la valeur de la fonction L du carré symétrique de f en k est bornée par la valuation p-adique de la valeur de l’ordre du groupe de Selmer de l’adjoint de la représentation p-adique galoisienne associée à f restreinte au corps gaussien et tordue par l’inverse du caractère cyclotomique. Notre méthode suit une idée de Ribet, dans le sens où nous introduisons une étape intermédiaire et produisons des congruences entre formes CAP et formes non CAP sur le groupe unitaire U(2,2).

DOI: 10.5802/aif.2427
Classification: 11F33,  11F55,  11F67,  11F80
Keywords: Automorphic forms on unitary groups, congruences, Selmer groups, Bloch-Kato conjecture
Klosin, Krzysztof 1

1 Cornell University Department of Mathematics 310 Malott Hall Ithaca, NY 14853-4201 (USA)
@article{AIF_2009__59_1_81_0,
     author = {Klosin, Krzysztof},
     title = {Congruences among modular forms on {U(2,2)} and the {Bloch-Kato} conjecture},
     journal = {Annales de l'Institut Fourier},
     pages = {81--166},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {1},
     year = {2009},
     doi = {10.5802/aif.2427},
     mrnumber = {2514862},
     zbl = {1214.11055},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2427/}
}
TY  - JOUR
AU  - Klosin, Krzysztof
TI  - Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture
JO  - Annales de l'Institut Fourier
PY  - 2009
DA  - 2009///
SP  - 81
EP  - 166
VL  - 59
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2427/
UR  - https://www.ams.org/mathscinet-getitem?mr=2514862
UR  - https://zbmath.org/?q=an%3A1214.11055
UR  - https://doi.org/10.5802/aif.2427
DO  - 10.5802/aif.2427
LA  - en
ID  - AIF_2009__59_1_81_0
ER  - 
%0 Journal Article
%A Klosin, Krzysztof
%T Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture
%J Annales de l'Institut Fourier
%D 2009
%P 81-166
%V 59
%N 1
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2427
%R 10.5802/aif.2427
%G en
%F AIF_2009__59_1_81_0
Klosin, Krzysztof. Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture. Annales de l'Institut Fourier, Volume 59 (2009) no. 1, pp. 81-166. doi : 10.5802/aif.2427. http://www.numdam.org/articles/10.5802/aif.2427/

[1] Bellaïche, J.; Chenevier, G. p -adic families of Galois representations and higher rank Selmer groups (Astérisque)

[2] Bellaïche, J.; Chenevier, G. Formes non tempérées pour U(3) et conjectures de Bloch-Kato, Ann. Sci. École Norm. Sup. (4), Volume 37 (2004) no. 4, pp. 611-662 | Numdam | MR

[3] Berger, T. An Eisenstein ideal for imaginary quadratic fields and the Bloch-Kato conjecture for Hecke characters (2007) (arXiv:math.NT/0701177)

[4] Blasius, D.; Rogawski, J. D. Zeta functions of Shimura varieties, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 525-571 | MR | Zbl

[5] Bloch, S.; Kato, K. L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progr. Math.), Volume 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333-400 | MR | Zbl

[6] Braun, H. Hermitian modular functions, Ann. of Math. (2), Volume 50 (1949), pp. 827-855 | DOI | MR | Zbl

[7] Braun, H. Hermitian modular functions. II. Genus invariants of Hermitian forms, Ann. of Math. (2), Volume 51 (1950), pp. 92-104 | DOI | MR | Zbl

[8] Braun, H. Hermitian modular functions. III, Ann. of Math. (2), Volume 53 (1951), pp. 143-160 | DOI | MR | Zbl

[9] Brown, J. Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture, Compos. Math., Volume 143 (2007) no. 2, pp. 290-322 | MR

[10] Bump, D. Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[11] Darmon, H.; Diamond, F.; Taylor, R. Fermat’s last theorem, Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993), Internat. Press, Cambridge, MA, 1997, pp. 2-140 | MR | Zbl

[12] Deligne, P. Valeurs de fonctions L et périodes d’intégrales, Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc., Providence, R.I., 1979, pp. 313-346 (With an appendix by N. Koblitz and A. Ogus) | Zbl

[13] Diamond, F.; Im, J. Modular forms and modular curves, Seminar on Fermat’s Last Theorem (Toronto, ON, 1993–1994) (CMS Conf. Proc.), Volume 17, Amer. Math. Soc., Providence, RI, 1995, pp. 39-133 | MR | Zbl

[14] Diamond, Fred; Flach, Matthias; Guo, Li The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. École Norm. Sup. (4), Volume 37 (2004) no. 5, pp. 663-727 | Numdam | MR | Zbl

[15] Dummigan, N. Period ratios of modular forms, Math. Ann., Volume 318 (2000) no. 3, pp. 621-636 | DOI | MR | Zbl

[16] Dummigan, N. Symmetric square L-functions and Shafarevich-Tate groups, Experiment. Math., Volume 10 (2001) no. 3, pp. 383-400 | MR | Zbl

[17] Dummigan, N. Symmetric square L-functions and Shafarevich-Tate groups, II (2008) (Preprint)

[18] Eisenbud, D. Commutative algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 (With a view toward algebraic geometry) | MR | Zbl

[19] Fontaine, J.-M. Sur certains types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. (2), Volume 115 (1982) no. 3, pp. 529-577 | DOI | MR | Zbl

[20] Fontaine, J.-M.; Perrin-Riou, B. Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 599-706 | MR

[21] Freitag, E. Siegelsche Modulfunktionen, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 254, Springer-Verlag, Berlin, 1983 | MR | Zbl

[22] Gelbart, S. Automorphic forms on adèle groups, Princeton University Press, Princeton, N.J., 1975 (Annals of Mathematics Studies, No. 83) | MR | Zbl

[23] Gritsenko, V. A. The Maass space for SU (2,2). The Hecke ring, and zeta functions, Trudy Mat. Inst. Steklov., Volume 183 (1990), p. 68-78, 223–225 Translated in Proc. Steklov Inst. Math. 1991, no. 4, 75–86, Galois theory, rings, algebraic groups and their applications (Russian) | MR | Zbl

[24] Gritsenko, V. A. Parabolic extensions of the Hecke ring of the general linear group. II, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 183 (1990) no. Modul. Funktsii i Kvadrat. Formy. 1, p. 56-76, 165, 167 | MR | Zbl

[25] Hida, H. Galois representations and the theory of p-adic Hecke algebras, Sūgaku, Volume 39 (1987) no. 2, pp. 124-139 Sugaku Expositions 2 (1989), no. 1, 75–102 | MR | Zbl

[26] Hida, H. Elementary theory of L -functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[27] Hida, H. Modular forms and Galois cohomology, Cambridge Studies in Advanced Mathematics, 69, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[28] Hida, H. p -adic automorphic forms on Shimura varieties, Springer Monographs in Mathematics, Springer-Verlag, New York, 2004 | MR | Zbl

[29] Hina, T.; Sugano, T. On the local Hecke series of some classical groups over 𝔭-adic fields, J. Math. Soc. Japan, Volume 35 (1983) no. 1, pp. 133-152 | DOI | MR | Zbl

[30] Ikeda, T. On the lifting of hermitian modular forms (2007) (Preprint) | MR

[31] Iwaniec, H. Topics in classical automorphic forms, Graduate Studies in Mathematics, 17, American Mathematical Society, Providence, RI, 1997 | MR | Zbl

[32] Kim, H. Automorphic L-functions, Lectures on automorphic L -functions (Fields Inst. Monogr.), Volume 20, Amer. Math. Soc., Providence, RI, 2004, pp. 97-201 | MR

[33] Kings, G. The Bloch-Kato conjecture on special values of L-functions. A survey of known results, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 1, pp. 179-198 Les XXIIèmes Journées Arithmetiques (Lille, 2001) | DOI | Numdam | MR | Zbl

[34] Klosin, K. Congruences among automorphic forms on the unitary group U ( 2 , 2 ) , Thesis, University of Michigan, Ann Arbor, 2006

[35] Klosin, K. Adelic Maass spaces on U ( 2 , 2 ) (2007) (arXiv:math.NT/0706.2828)

[36] Kojima, H. An arithmetic of Hermitian modular forms of degree two, Invent. Math., Volume 69 (1982) no. 2, pp. 217-227 | DOI | MR | Zbl

[37] Krieg, A. The Maaß spaces on the Hermitian half-space of degree 2, Math. Ann., Volume 289 (1991) no. 4, pp. 663-681 | DOI | MR | Zbl

[38] Langlands, R. P. On the functional equations satisfied by Eisenstein series, Springer-Verlag, Berlin, 1976 (Lecture Notes in Mathematics, Vol. 544) | MR | Zbl

[39] Mazur, B. Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977) no. 47, p. 33-186 (1978) | DOI | Numdam | MR | Zbl

[40] Mazur, B. An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 243-311 | MR | Zbl

[41] Mazur, B.; Wiles, A. Class fields of abelian extensions of Q, Invent. Math., Volume 76 (1984) no. 2, pp. 179-330 | DOI | MR | Zbl

[42] Miyake, T. Modular forms, Springer-Verlag, Berlin, 1989 (Translated from the Japanese by Yoshitaka Maeda) | MR | Zbl

[43] Mœglin, C.; Waldspurger, J.-L. Le spectre résiduel de GL (n), Ann. Sci. École Norm. Sup. (4), Volume 22 (1989) no. 4, pp. 605-674 | Numdam | MR | Zbl

[44] Raghavan, S.; Sengupta, J. A Dirichlet series for Hermitian modular forms of degree 2, Acta Arith., Volume 58 (1991) no. 2, pp. 181-201 | MR | Zbl

[45] Ribet, K. A. A modular construction of unramified p-extensions of Q(μ p ), Invent. Math., Volume 34 (1976) no. 3, pp. 151-162 | DOI | MR | Zbl

[46] Rubin, K. Euler systems, Annals of Mathematics Studies, 147, Princeton University Press, Princeton, NJ, 2000 (Hermann Weyl Lectures. The Institute for Advanced Study) | MR | Zbl

[47] Schmidt, C.-G. p-adic measures attached to automorphic representations of GL (3), Invent. Math., Volume 92 (1988) no. 3, pp. 597-631 | DOI | MR | Zbl

[48] Serre, J.-P. Groupes de Lie l-adiques attachés aux courbes elliptiques, Les Tendances Géom. en Algébre et Théorie des Nombres, Éditions du Centre National de la Recherche Scientifique, Paris, 1966, pp. 239-256 | MR | Zbl

[49] Shimura, G. Confluent hypergeometric functions on tube domains, Math. Ann., Volume 260 (1982) no. 3, pp. 269-302 | DOI | MR | Zbl

[50] Shimura, G. Euler products and Eisenstein series, CBMS Regional Conference Series in Mathematics, 93, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997 | MR

[51] Shimura, G. Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, 82, American Mathematical Society, Providence, RI, 2000 | MR | Zbl

[52] Skinner, C. M. Selmer groups (2004) (Preprint)

[53] Sturm, J. Special values of zeta functions, and Eisenstein series of half integral weight, Amer. J. Math., Volume 102 (1980) no. 2, pp. 219-240 | DOI | MR | Zbl

[54] Taylor, R.; Wiles, A. Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2), Volume 141 (1995) no. 3, pp. 553-572 | DOI | MR | Zbl

[55] Urban, E. Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J., Volume 106 (2001) no. 3, pp. 485-525 | DOI | MR | Zbl

[56] Vatsal, V. Canonical periods and congruence formulae, Duke Math. J., Volume 98 (1999) no. 2, pp. 397-419 | DOI | MR | Zbl

[57] Vatsal, V. Special values of anticyclotomic L-functions, Duke Math. J., Volume 116 (2003) no. 2, pp. 219-261 | DOI | MR | Zbl

[58] Washington, L. C. Galois cohomology, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 101-120 | MR | Zbl

[59] Washington, L. C. Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997 | MR | Zbl

[60] Wiles, A. The Iwasawa conjecture for totally real fields, Ann. of Math. (2), Volume 131 (1990) no. 3, pp. 493-540 | DOI | MR | Zbl

[61] Wiles, A. Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2), Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl

Cited by Sources: