Pour un compact dans , regulier, pôlynomiallement convexe et cerclé, on construit une suite de paires avec pôlynomes homogènes en deux variables et tel que les ensembles font une approximation de et quand est la fermeture d’un domaine strictement pseudoconvexe les mesures de comptage normalisées associées à l’ensemble fini tendent vers la mesure de Monge-Ampère pour . L’élément principal est un théorème d’approximation pour les fonctions sousharmoniques de croissance logarithmique à une variable.
For a regular, compact, polynomially convex circled set in , we construct a sequence of pairs of homogeneous polynomials in two variables with such that the sets approximate and if is the closure of a strictly pseudoconvex domain the normalized counting measures associated to the finite set converge to the pluripotential-theoretic Monge-Ampère measure for . The key ingredient is an approximation theorem for subharmonic functions of logarithmic growth in one complex variable.
Classification : 32U05, 32W20
Mots clés : potentiel logarithmique, mesure de Monge-Ampère, fonctions sousharmoniques, atomisation
@article{AIF_2008__58_6_2191_0, author = {Bloom, Thomas and Levenberg, Norman and Lyubarskii, Yu.}, title = {A {Hilbert} {Lemniscate} {Theorem} in $\mathbb{C}^2$}, journal = {Annales de l'Institut Fourier}, pages = {2191--2220}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {6}, year = {2008}, doi = {10.5802/aif.2411}, mrnumber = {2473634}, zbl = {1152.32015}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2411/} }
TY - JOUR AU - Bloom, Thomas AU - Levenberg, Norman AU - Lyubarskii, Yu. TI - A Hilbert Lemniscate Theorem in $\mathbb{C}^2$ JO - Annales de l'Institut Fourier PY - 2008 DA - 2008/// SP - 2191 EP - 2220 VL - 58 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2411/ UR - https://www.ams.org/mathscinet-getitem?mr=2473634 UR - https://zbmath.org/?q=an%3A1152.32015 UR - https://doi.org/10.5802/aif.2411 DO - 10.5802/aif.2411 LA - en ID - AIF_2008__58_6_2191_0 ER -
Bloom, Thomas; Levenberg, Norman; Lyubarskii, Yu. A Hilbert Lemniscate Theorem in $\mathbb{C}^2$. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2191-2220. doi : 10.5802/aif.2411. http://www.numdam.org/articles/10.5802/aif.2411/
[1] A Dirichlet problem for the complex Monge-Ampère operator in , Michigan Math. J., Volume 55 (2007) no. 1, pp. 123-138 | Article | MR 2320175
[2] The Dirichlet problem for a complex Monge-Ampère equation, Inv. Math., Volume 37 (1976), pp. 1-44 | Article | MR 445006 | Zbl 0315.31007
[3] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 | Article | MR 674165 | Zbl 0547.32012
[4] Mappings of partially analytic spaces, Amer. J. Math., Volume 83 (1961), pp. 209-242 | Article | MR 123732 | Zbl 0118.07701
[5] On the definition of the Monge-Ampère operator in , Math. Ann., Volume 328 (2004) no. 3, pp. 415-423 | Article | MR 2036329 | Zbl 1060.32018
[6] Some applications of the Robin function to multivariable approximation theory, J. Approx. Th., Volume 92 (1998), pp. 1-21 | Article | MR 1492855 | Zbl 0896.31003
[7] Random polynomials and Green functions, International Math. Res. Notices, Volume 28 (2005), pp. 1689-1708 | Article | MR 2172337 | Zbl 1097.32012
[8] Weak-* convergence of Monge-Ampère measures, Math. Z., Volume 254 (2006) no. 3, pp. 505-508 | Article | MR 2244362 | Zbl 1106.32024
[9] Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (1993), pp. 115-193 (Univ. Ser. Math., Plenum, New York) | MR 1211880 | Zbl 0792.32006
[10] Approximation of subharmonic functions with applications, Approximation, complex analysis, and potential theory (NATO Sci. Ser. II Math. Phys. Chem.), Volume 37, Kluwer Acad. Publ., Dordrecht, 2001, pp. 163-189 (Montreal, QC, 2000) | MR 1873588 | Zbl 0991.31001
[11] An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966 | MR 203075 | Zbl 0138.06203
[12] Notions of Convexity, Birkhäuser, 1994 | MR 1301332 | Zbl 0835.32001
[13] Pluripotential Theory, Clarendon Press, Oxford, 1991 | MR 1150978 | Zbl 0742.31001
[14] On approximation of subharmonic functions, Journal d’Analyse Math., Volume 83 (2001), pp. 121-149 | Article | Zbl 0981.31002
[15] Introduction to the Theory of Entire Functions of Several Variables, Amer. Math. Soc., Providence, 1974 | MR 346175 | Zbl 0286.32004
[16] Rational approximation and pluripolar sets, Math USSR Sbornik, Volume 47 (1984), pp. 91-113 | Article | Zbl 0522.32012
[17] The convergence of Padé approximants to functions with branch points, J. Approx. Th., Volume 91 (1997), pp. 139-204 | Article | MR 1484040 | Zbl 0896.41009
[18] An estimate for an extremal plurisubharmonic function on , Sémin. d’Analyse P. Lelong - P. Dolbeault - H. Skoda, Années 1981/83, Lect. Notes Math. 1028, 318-328, 1983 | MR 774982 | Zbl 0522.32014
[19] Approximation of subharmonic functions, Anal. Math., Volume 11 (1985) no. 3, pp. 257-282 (Russian) | MR 822590 | Zbl 0594.31005
Cité par Sources :