Nous décrirons explicitement les espaces de modules de structures holomorphes polystables avec sur un fibré vectoriel de rang deux avec et pour toutes les surfaces minimales de la classe VII avec et par rapport à toutes les métriques de Gauduchon . Ces surfaces sont des surfaces complexes non-elliptiques et non-Kählériennes et ont récemment été complètement classifiées. Si est une demi-surface d’Inoue ou une surface d’Inoue parabolique, est toujours un disque complexe compact de dimension un. Si est une surface d’Enoki, on obtient un disque complexe avec un nombre fini d’auto-intersections transverses, arbitrairement grand quand varie dans l’espace des métriques de Gauduchon. peut être identifié à un espace de modules de -instantons. Les espaces de modules de fibrés simples du type considéré mènent à des exemples intéressants d’espaces complexes singuliers non-Hausdorff de dimension un.
We describe explicitly the moduli spaces of polystable holomorphic structures with on a rank two vector bundle with and for all minimal class VII surfaces with and with respect to all possible Gauduchon metrics . These surfaces are non-elliptic and non-Kähler complex surfaces and have recently been completely classified. When is a half or parabolic Inoue surface, is always a compact one-dimensional complex disc. When is an Enoki surface, one obtains a complex disc with finitely many transverse self-intersections whose number becomes arbitrarily large when varies in the space of Gauduchon metrics. can be identified with a moduli space of -instantons. The moduli spaces of simple bundles of the above type lead to interesting examples of non-Hausdorff singular one-dimensional complex spaces.
Classification : 14J60, 14J25, 57R57
Mots clés : espaces de modules, fibrés holomorphes, surfaces complexes, instantons
@article{AIF_2008__58_5_1691_0, author = {Sch\"obel, Konrad}, title = {Moduli {Spaces} of ${\rm PU}(2)${-Instantons} on {Minimal} {Class~VII} {Surfaces} with $b_2=1$}, journal = {Annales de l'Institut Fourier}, pages = {1691--1722}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {5}, year = {2008}, doi = {10.5802/aif.2395}, mrnumber = {2445830}, zbl = {1159.14022}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2395/} }
TY - JOUR AU - Schöbel, Konrad TI - Moduli Spaces of ${\rm PU}(2)$-Instantons on Minimal Class VII Surfaces with $b_2=1$ JO - Annales de l'Institut Fourier PY - 2008 DA - 2008/// SP - 1691 EP - 1722 VL - 58 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2395/ UR - https://www.ams.org/mathscinet-getitem?mr=2445830 UR - https://zbmath.org/?q=an%3A1159.14022 UR - https://doi.org/10.5802/aif.2395 DO - 10.5802/aif.2395 LA - en ID - AIF_2008__58_5_1691_0 ER -
Schöbel, Konrad. Moduli Spaces of ${\rm PU}(2)$-Instantons on Minimal Class VII Surfaces with $b_2=1$. Annales de l'Institut Fourier, Tome 58 (2008) no. 5, pp. 1691-1722. doi : 10.5802/aif.2395. http://www.numdam.org/articles/10.5802/aif.2395/
[1] Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 4, Springer-Verlag, Berlin, 2004 | MR 2030225 | Zbl 1036.14016
[2] Surfaces of class and affine geometry, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, Volume 46 (1982) no. 4, p. 710-761, 896 English translation: Math. USSR Izv. 21 (1983), no. 1, 31–73 | MR 670164 | Zbl 0527.14029
[3] Instantons on Hopf surfaces and monopoles on solid tori, Journal für reine und angewandte Mathematik, Volume 400 (1989), pp. 146-172 | MR 1013728 | Zbl 0669.32012
[4] Stable bundles on non-Kähler elliptic surfaces, Communications in Mathematical Physics, Volume 254 (2005) no. 3, pp. 565-580 | Article | MR 2126483 | Zbl 1071.32009
[5] Stable -bundles on Hirzebruch surfaces, Mathematische Zeitschrift, Volume 194 (1987) no. 1, pp. 143-152 | Article | MR 871226 | Zbl 0627.14028
[6] A Nakai-Moishezon criterion for non-Kähler surfaces, Université de Grenoble. Annales de l’Institut Fourier, Volume 50 (2000) no. 5, pp. 1533-1538 | Article | Numdam | Zbl 0964.32014
[7] Structure des surfaces de Kato, Mémoires de la Société Mathématique de France. Nouvelle Série, Volume 112 (1984) no. 14, pp. 1-120 | Numdam | MR 763959 | Zbl 0543.32012
[8] Class surfaces with curves, The Tôhoku Mathematical Journal. Second Series, Volume 55 (2003) no. 2, pp. 283-309 | Article | MR 1979500 | Zbl 1034.32012
[9] Principal bundles on elliptic fibrations, The Asian Journal of Mathematics, Volume 1 (1997) no. 2, pp. 214-223 | MR 1491982 | Zbl 0927.14006
[10] Irrationality and the -cobordism conjecture, Journal of Differential Geometry, Volume 26 (1987) no. 1, pp. 141-168 | MR 892034 | Zbl 0631.57010
[11] The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1990 (Oxford Science Publications) | MR 1079726 | Zbl 0820.57002
[12] Vector bundles on manifolds without divisors and a theorem on deformations, Université de Grenoble. Annales de l’Institut Fourier, Volume 32 (1982) no. 4, p. 25-51 (1983) | Article | EuDML 74563 | Numdam | Zbl 0488.32012
[13] On surfaces of class with curves, Japan Academy. Proceedings. Series A. Mathematical Sciences, Volume 56 (1980) no. 6, pp. 275-279 | Article | MR 581470 | Zbl 0462.32012
[14] Surfaces of class with curves, The Tôhoku Mathematical Journal. Second Series, Volume 33 (1981) no. 4, pp. 453-492 | Article | MR 643229 | Zbl 0476.14013
[15] Rank two vector bundles over regular elliptic surfaces, Inventiones Mathematicae, Volume 96 (1989), pp. 283-332 | Article | EuDML 143680 | MR 989699 | Zbl 0671.14006
[16] Vector bundles over elliptic fibrations, Journal of Algebraic Geometry, Volume 8 (1999) no. 2, pp. 279-401 | MR 1675162 | Zbl 0937.14004
[17] Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 27, Springer-Verlag, Berlin, 1994 | MR 1288304 | Zbl 0817.14017
[18] La -forme de torsion d’une variété hermitienne compacte, Mathematische Annalen, Volume 267 (1984) no. 4, pp. 495-518 | Article | EuDML 163911 | Zbl 0523.53059
[19] Principles of Algebraic Geometry, Wiley Classics Library, John Wiley & Sons Inc., New York, 1994 | MR 1288523 | Zbl 0836.14001
[20] On surfaces of class , Inventiones Mathematicae, Volume 24 (1974), pp. 269-310 | Article | EuDML 142279 | MR 342734 | Zbl 0283.32019
[21] New surfaces with no meromorphic functions. II, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 91-106 | MR 442297 | Zbl 0365.14011
[22] Compact complex manifolds containing “global” spherical shells. I, Proceedings of the International Symposium on Algebraic Geometry (Kyoto University, Kyoto, 1977) (1978), pp. 45-84 | Zbl 0421.32010
[23] Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, Princeton, NJ, 1987 | MR 909698 | Zbl 0708.53002
[24] On the structure of compact complex analytic surfaces. I, American Journal of Mathematics, Volume 86 (1964), pp. 751-798 | Article | MR 187255 | Zbl 0137.17501
[25] On the structure of compact complex analytic surfaces. II, American Journal of Mathematics, Volume 88 (1966), pp. 682-721 | Article | MR 205280 | Zbl 0193.37701
[26] On manifolds homeomorphic to , Inventiones Mathematicae, Volume 95 (1989) no. 3, pp. 591-600 | Article | EuDML 143668 | MR 979367 | Zbl 0691.57008
[27] Algebraic geometric interpretation of Donaldson’s polynomial invariants, Journal of Differential Geometry, Volume 37 (1993) no. 2, pp. 417-466 | Zbl 0809.14006
[28] On projectively flat Hermitian manifolds, Communications in Analysis and Geometry, Volume 2 (1994) no. 1, pp. 103-109 | MR 1312680 | Zbl 0837.53053
[29] The Kobayashi-Hitchin correspondence, World Scientific Publishing Co. Inc., River Edge, NJ, 1995 | MR 1370660 | Zbl 0849.32020
[30] Integrable systems associated to a Hopf surface, Canadian Journal of Mathematics, Volume 55 (2003) no. 3, pp. 609-635 | Article | MR 1980616 | Zbl 1058.37043
[31] On surfaces of class with curves, Inventiones Mathematicae, Volume 78 (1984) no. 3, pp. 393-443 | Article | EuDML 143179 | MR 768987 | Zbl 0575.14033
[32] Stable bundles and differentiable structures on certain elliptic surfaces, Inventiones Mathematicae, Volume 86 (1986) no. 2, pp. 357-370 | Article | EuDML 143399 | MR 856849 | Zbl 0613.14018
[33] -type-invariants associated to -bundles and the differentiable structure of Barlow’s surface, Inventiones Mathematicae, Volume 95 (1989) no. 3, pp. 601-614 | Article | EuDML 143669 | Zbl 0691.57007
[34] Projectively flat surfaces and Bogomolov’s theorem on class surfaces, International Journal of Mathematics, Volume 5 (1994) no. 2, pp. 253-264 | Article | Zbl 0803.53038
[35] Moduli spaces of stable bundles on non-Kählerian elliptic fibre bundles over curves, Expositiones Mathematicae. International Journal, Volume 16 (1998) no. 3, pp. 193-248 | MR 1630918 | Zbl 0933.14022
[36] Donaldson theory on non-Kählerian surfaces and class VII surfaces with , Inventiones Mathematicae, Volume 162 (2005) no. 3, pp. 493-521 | Article | MR 2198220 | Zbl 1093.32006
[37] The pseudo-effective cone of a non-Kählerian surface and applications, Mathematische Annalen, Volume 335 (2006) no. 4, pp. 965-989 | Article | MR 2232025 | Zbl 1096.32011
[38] Harmonic sections in sphere bundles, normal neighborhoods of reduction loci, and instanton moduli spaces on definite 4-manifolds, Geometry and Topology, Volume 11 (2007), pp. 1681-1730 | Article | MR 2350464 | Zbl 1138.57030
[39] Instantons and curves on class VII surfaces (2007) (arXiv:0704.2634) | Zbl 1231.14028
[40] Compact moduli spaces of stable sheaves over non-algebraic surfaces, Documenta Mathematica, Volume 6 (2001), pp. 11-29 (Electronic) | EuDML 121375 | MR 1816525 | Zbl 0973.32007
[41] Vector bundles on blown-up Hopf surfaces (2006) (http://www.iecn.u-nancy.fr/~toma/eclahopf.pdf)
Cité par Sources :