Is the Luna stratification intrinsic?
Annales de l'Institut Fourier, Volume 58 (2008) no. 2, pp. 689-721.

Let GGL(V) be a representation of a reductive linear algebraic group G on a finite-dimensional vector space V, defined over an algebraically closed field of characteristic zero. The categorical quotient X=V//G carries a natural stratification, due to D. Luna. This paper addresses the following questions:

(i) Is the Luna stratification of X intrinsic? That is, does every automorphism of V//G map each stratum to another stratum?

(ii) Are the individual Luna strata in X intrinsic? That is, does every automorphism of V//G map each stratum to itself?

In general, the Luna stratification is not intrinsic. Nevertheless, we give positive answers to questions (i) and (ii) for interesting families of representations.

Soit GGL(V) une représentation d’un groupe algébrique réductif G, définie sur un corps algébraiquement clos de caractéristique zéro. D’après D. Luna, le quotient catégorique X=V//G comporte une stratification naturelle. L’article présente les deux questions suivantes :

(i) La stratification de X est-elle intrinsèque ? Plus précisément, l’image d’une strate par un automorphisme de X quelconque est-elle avec strate ?

(ii) Les strates individuelles de X, sont-elles intrinsèques ? C’est-à-dire, est-il vrai que toute strate est invariante par tous les automorphismes de X ?

D’une manière générale, la stratification de Luna n’est pas intrinsèque. Néanmoins, pour des familles de représentations intéressantes les questions (i) et (ii) ont des réponses positives.

DOI: 10.5802/aif.2365
Classification: 14R20, 14L30, 14B05
Keywords: Categorical quotient, Luna stratification, matrix invariant, representation type
Mot clés : quotient catégorique, stratification de Luna, invariants de matrices, type de representation
Kuttler, Jochen 1; Reichstein, Zinovy 2

1 University of British Columbia Department of Mathematics Vancouver, BC V6T 1Z2 (Canada) Current address: University of Alberta Department of Mathematical and Statistical Sciences Edmonton, AB T6G 2G1 (Canada)
2 University of British Columbia Department of Mathematics Vancouver, BC V6T 1Z2 (Canada)
@article{AIF_2008__58_2_689_0,
     author = {Kuttler, Jochen and Reichstein, Zinovy},
     title = {Is the {Luna} stratification intrinsic?},
     journal = {Annales de l'Institut Fourier},
     pages = {689--721},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {2},
     year = {2008},
     doi = {10.5802/aif.2365},
     zbl = {1145.14047},
     mrnumber = {2410387},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2365/}
}
TY  - JOUR
AU  - Kuttler, Jochen
AU  - Reichstein, Zinovy
TI  - Is the Luna stratification intrinsic?
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 689
EP  - 721
VL  - 58
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2365/
DO  - 10.5802/aif.2365
LA  - en
ID  - AIF_2008__58_2_689_0
ER  - 
%0 Journal Article
%A Kuttler, Jochen
%A Reichstein, Zinovy
%T Is the Luna stratification intrinsic?
%J Annales de l'Institut Fourier
%D 2008
%P 689-721
%V 58
%N 2
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2365/
%R 10.5802/aif.2365
%G en
%F AIF_2008__58_2_689_0
Kuttler, Jochen; Reichstein, Zinovy. Is the Luna stratification intrinsic?. Annales de l'Institut Fourier, Volume 58 (2008) no. 2, pp. 689-721. doi : 10.5802/aif.2365. http://www.numdam.org/articles/10.5802/aif.2365/

[1] Artin, M. On Azumaya algebras and finite dimensional representations of rings, J. Algebra, Volume 11 (1969), pp. 532-563 | DOI | MR | Zbl

[2] Bass, H.; Haboush, W. Linearizing certain reductive group actions, Trans. Amer. Math. Soc., Volume 292 (1985) no. 2, pp. 463-482 | DOI | MR | Zbl

[3] Borel, A. Linear Algebraic Groups, Second edition. Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991 | MR | Zbl

[4] Colliot-Thélène, J.-L.; Sansuc, J.-J. Fibrés quadratiques et composantes connexes réelles, Math. Ann., Volume 244 (1979) no. 2, pp. 105-134 | DOI | MR | Zbl

[5] Drensky, V.; Formanek, E. Polynomial identity rings, Advanced Courses in Mathematics – CRM Barcelona, Birkhäuser Verlag, Basel, 2004 | MR | Zbl

[6] Formanek, E. The polynomial identities and invariants of n×n matrices., CBMS Regional Conference Series in Mathematics, Volume 78 (1991) | MR | Zbl

[7] Grace, J. H.; Young, A. The Algebra of Invariants, Cambridge University Press, 1903

[8] Kraft, H. Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 | MR | Zbl

[9] Kuttler, J.; Reichstein, Z. Is the Luna stratification intrinsic? ( math.AG/0610669)

[10] Le Bruyn, L.; Procesi, C. Étale local structure of matrix invariants and concomitants, in Algebraic groups Utrecht 1986, Lecture Notes in Math., Volume 1271 (1987), pp. 143-175 | DOI | MR | Zbl

[11] Le Bruyn, L.; Reichstein, Z. Smoothness in algebraic geography, Proc. London Math. Soc. (3), Lecture Notes in Math., Volume 79 (1999) no. 1, pp. 158-190 | DOI | MR | Zbl

[12] Lorenz, M. On the Cohen-Macaulay property of multiplicative invariants, Trans. Amer. Math. Soc., Volume 358 (2006) no. 4, pp. 1605-1617 | DOI | MR | Zbl

[13] Luna, D. Slices étales, Sur les groupes algébriques, Soc. Math. France, Mémoire 33, Paris, 1973, pp. 81-105 | Numdam | MR

[14] Luna, D.; Richardson, R. W. A generalization of the Chevalley restriction theorem, Duke Math. J., Volume 46 (1979) no. 3, pp. 487-496 | DOI | MR | Zbl

[15] Mumford, D. The red book of varieties and schemes, Lecture Notes in Mathematics, 1358, Springer-Verlag, Berlin, 1988 | MR | Zbl

[16] Mumford, D.; Fogarty, J.; Kirwan, F. Geometric invariant theory, Springer-Verlag, Berlin, 1994 | MR | Zbl

[17] Popov, V. L. Criteria for the stability of the action of a semisimple group on a factorial manifold, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., Volume 34 (1970), pp. 523-531 English transl.: Math. USSR-Izv. 4 (1971), pp. 527–535 | MR | Zbl

[18] Popov, V. L. Generically multiple transitive algebraic group actions, Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces (2004) (TIFR, Mumbai, India, to appear. Preprint available at www.arxiv.org/math.AG/0409024) | Zbl

[19] Popov, V. L.; Vinberg, E. B. Invariant Theory, Algebraic Geometry IV, Encyclopedia of Mathematical Sciences, Springer, Volume 55 (1994), pp. 123-284 | Zbl

[20] Prill, D. Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J., Volume 34 (1967), pp. 375-386 | DOI | MR | Zbl

[21] Procesi, C. The invariant theory of n×n matrices, Advances in Math., Volume 19 (1976) no. 3, pp. 306-381 | DOI | MR | Zbl

[22] Reichstein, Z. On automorphisms of matrix invariants, Trans. Amer. Math. Soc., Volume 340 (1993) no. 1, pp. 353-371 | DOI | MR | Zbl

[23] Reichstein, Z. On automorphisms of matrix invariants induced from the trace ring, Linear Algebra Appl., Volume 193 (1993), pp. 51-74 | DOI | MR | Zbl

[24] Reichstein, Z.; Vonessen, N. Group actions on central simple algebras: a geometric approach, J. Algebra, Volume 304 (2006) no. 2, pp. 1160-1192 | DOI | MR | Zbl

[25] Richardson, R. W.; Jr. Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math., Volume 16 (1972), pp. 6-14 | DOI | MR | Zbl

[26] Richardson, R. W.; Jr. Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke Math J., Volume 57 (1988) no. 1, pp. 1-35 | DOI | MR | Zbl

[27] Schwarz, G. W. Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math., Volume 51 (1980), pp. 37-135 | DOI | Numdam | MR | Zbl

Cited by Sources: