Integrability of Jacobi and Poisson structures
[Intégrabilité des structures de Jacobi]
Annales de l'Institut Fourier, Tome 57 (2007) no. 4, pp. 1181-1216.

Nous discutons l’intégrabilité des variétés de Jacobi par des groupoïdes de contact. Nous considérons ensuite ce que le point de vue des structures de Jacobi apporte à la géométrie de Poisson. En particulier, en utilisant les groupoïdes de contacts, nous prouvons un théorème à la Kostant sur la préquantization des groupoïdes symplectiques. Ce théorème répond à une question posée par Weinstein et Xu. Nous utilisons les méthodes de Crainic-Fernandes sur les A-paths et les group(oïd)es de monodromie d’algebroïdes. En particulier, la plupart des résultats que nous obtenons sont valides dans le cas non-intégrable.

We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu. The methods used are those of Crainic-Fernandes on A-paths and monodromy group(oid)s of algebroids. In particular, most of the results we obtain are valid also in the non-integrable case.

DOI : https://doi.org/10.5802/aif.2291
Classification : 53D17
Mots clés : structure de Jacobi, géométrie de Poisson, préquantification, groupoïdes contact, intégration
@article{AIF_2007__57_4_1181_0,
     author = {Crainic, Marius and Zhu, Chenchang},
     title = {Integrability of Jacobi and Poisson structures},
     journal = {Annales de l'Institut Fourier},
     pages = {1181--1216},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {4},
     year = {2007},
     doi = {10.5802/aif.2291},
     mrnumber = {2339329},
     zbl = {1146.53055},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2291/}
}
Crainic, Marius; Zhu, Chenchang. Integrability of Jacobi and Poisson structures. Annales de l'Institut Fourier, Tome 57 (2007) no. 4, pp. 1181-1216. doi : 10.5802/aif.2291. http://www.numdam.org/articles/10.5802/aif.2291/

[1] Blair, David E. Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser Boston Inc., Boston, MA, 2002 | MR 1874240 | Zbl 1011.53001

[2] Bursztyn, Henrique; Crainic, Marius; Weinstein, Alan; Zhu, Chenchang Integration of twisted Dirac brackets, Duke Math. J., Volume 123 (2004) no. 3, pp. 549-607 | Article | MR 2068969 | Zbl 1067.58016

[3] Cannas da Silva, Ana; Weinstein, Alan Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, American Mathematical Society, Providence, RI, 1999 | MR 1747916 | Zbl 01515267

[4] Cattaneo, Alberto S.; Felder, Giovanni Poisson sigma models and symplectic groupoids, Quantization of singular symplectic quotients (Progr. Math.), Volume 198, Birkhäuser, Basel, 2001, pp. 61-93 | MR 1938552 | Zbl 1038.53074

[5] Crainic, Marius Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv., Volume 78 (2003) no. 4, pp. 681-721 | Article | MR 2016690 | Zbl 1041.58007

[6] Crainic, Marius; Fernandes, Rui Loja Integrability of Lie brackets, Ann. of Math. (2), Volume 157 (2003) no. 2, pp. 575-620 | Article | MR 1973056 | Zbl 1037.22003

[7] Crainic, Marius; Fernandes, Rui Loja Integrability of Poisson brackets, J. Differential Geom., Volume 66 (2004) no. 1, pp. 71-137 | MR 2128714 | Zbl 1066.53131

[8] Dazord, Pierre Intégration d’algèbres de Lie locales et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math., Volume 320 (1995) no. 8, pp. 959-964 | Zbl 0843.57036

[9] Dazord, Pierre Sur l’intégration des algèbres de Lie locales et la préquantification, Bull. Sci. Math., Volume 121 (1997) no. 6, pp. 423-462 | Zbl 1053.53523

[10] Dazord, Pierre; Lichnerowicz, André; Marle, Charles-Michel Structure locale des variétés de Jacobi, J. Math. Pures Appl. (9), Volume 70 (1991) no. 1, pp. 101-152 | MR 1091922 | Zbl 0659.53033

[11] Guedira, Fouzia; Lichnerowicz, André Géométrie des algèbres de Lie locales de Kirillov, J. Math. Pures Appl. (9), Volume 63 (1984) no. 4, pp. 407-484 | MR 789560 | Zbl 0562.53029

[12] Higgins, Philip J.; Mackenzie, Kirill Algebraic constructions in the category of Lie algebroids, J. Algebra, Volume 129 (1990) no. 1, pp. 194-230 | Article | MR 1037400 | Zbl 0696.22007

[13] Iglesias-Ponte, David; Marrero, Juan C. Jacobi groupoids and generalized Lie bialgebroids, J. Geom. Phys., Volume 48 (2003) no. 2-3, pp. 385-425 | Article | MR 2007602 | Zbl 1037.17023

[14] Kerbrat, Yvan; Souici-Benhammadi, Zoubida Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math., Volume 317 (1993) no. 1, pp. 81-86 | MR 1228970 | Zbl 0804.58015

[15] Kirillov, A. A. Local Lie algebras, Uspehi Mat. Nauk, Volume 31 (1976) no. 4(190), pp. 57-76 | MR 438390 | Zbl 0352.58014

[16] Lichnerowicz, André Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9), Volume 57 (1978) no. 4, pp. 453-488 | MR 524629 | Zbl 0407.53025

[17] Moerdijk, Ieke; Mrčun, Janez On integrability of infinitesimal actions, Amer. J. Math., Volume 124 (2002) no. 3, pp. 567-593 | Article | MR 1902889 | Zbl 1013.58010

[18] Palais, Richard S. A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No., Volume 22 (1957), pp. iii+123 | MR 121424 | Zbl 0178.26502

[19] Weinstein, Alan Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.), Volume 16 (1987) no. 1, pp. 101-104 | Article | MR 866024 | Zbl 0618.58020

[20] Weinstein, Alan; Xu, Ping Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., Volume 417 (1991), pp. 159-189 | MR 1103911 | Zbl 0722.58021

[21] Zambon, Marco; Zhu, Chenchang Contact reduction and groupoid actions, Trans. Amer. Math. Soc., Volume 358 (2006) no. 3, p. 1365-1401 (electronic) | Article | MR 2187657 | Zbl 1092.53056