A Cauchy Problem for Elliptic Invariant Differential Operators and Continuity of a generalized Berezin transform
Annales de l'Institut Fourier, Volume 57 (2007) no. 3, pp. 693-702.

In this note, we generalize the results in our previous paper on the Casimir operator and Berezin transform, by showing the (L 2 ,L 2 )-continuity of a generalized Berezin transform associated with a branching problem for a class of unitary representations defined by invariant elliptic operators; we also show, that under suitable general conditions, this generalized Berezin transform is (L p ,L p )-continuous for 1p.

Dans cette note, nous généralisons les résultats de notre article précédent sur l’opérateur de Casimir et sur la transformée de Berezin, en prouvant la continuité (L 2 ,L 2 ) d’une transformée de Berezin généralisée associée à un problème de bifurcation pour une classe de représentations unitaires définie par des opérateurs elliptiques invariants. Nous prouvons aussi que, sous des conditions générales adéquates, cette transformée de Berezin généralisée est (L p ,L p )-continue pour 1p.

DOI: 10.5802/aif.2272
Classification: 22E46
Keywords: Discrete Series representations, branching laws, invariant elliptic operators
Mot clés : Séries discrètes, lois de bifurcation, opérateurs elliptiques invariants.
Ørsted, Bent 1; Vargas, Jorge 2

1 Ny Munkegade Department of Mathematics 8000 Aarhus C. (Danemark)
2 Universidad Nacional de Córdoba FAMAF-CIEM Ciudad Universitaria 5000 Córdoba (Argentine)
@article{AIF_2007__57_3_693_0,
     author = {{\O}rsted, Bent and Vargas, Jorge},
     title = {A {Cauchy} {Problem} for {Elliptic} {Invariant} {Differential} {Operators} and {Continuity} of a generalized {Berezin} transform},
     journal = {Annales de l'Institut Fourier},
     pages = {693--702},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {3},
     year = {2007},
     doi = {10.5802/aif.2272},
     zbl = {1123.22008},
     mrnumber = {2336825},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2272/}
}
TY  - JOUR
AU  - Ørsted, Bent
AU  - Vargas, Jorge
TI  - A Cauchy Problem for Elliptic Invariant Differential Operators and Continuity of a generalized Berezin transform
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 693
EP  - 702
VL  - 57
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2272/
DO  - 10.5802/aif.2272
LA  - en
ID  - AIF_2007__57_3_693_0
ER  - 
%0 Journal Article
%A Ørsted, Bent
%A Vargas, Jorge
%T A Cauchy Problem for Elliptic Invariant Differential Operators and Continuity of a generalized Berezin transform
%J Annales de l'Institut Fourier
%D 2007
%P 693-702
%V 57
%N 3
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2272/
%R 10.5802/aif.2272
%G en
%F AIF_2007__57_3_693_0
Ørsted, Bent; Vargas, Jorge. A Cauchy Problem for Elliptic Invariant Differential Operators and Continuity of a generalized Berezin transform. Annales de l'Institut Fourier, Volume 57 (2007) no. 3, pp. 693-702. doi : 10.5802/aif.2272. http://www.numdam.org/articles/10.5802/aif.2272/

[1] Atiyah, M. M., Elliptic operators, discrete groups and von Neumann algebras, Astérisque, Volume 32-33 (1976), pp. 43-72 | MR | Zbl

[2] Connes, A.; Moscovici, H. The L 2 -index theorem for homogeneous spaces of Lie groups, Ann. of Math. (2), Volume 115 (1982) no. 2, pp. 291-330 | DOI | MR | Zbl

[3] Cowling, M. The Kunze-Stein phenomenon, Ann. of Math., Volume 107 (1978), pp. 209-234 | DOI | MR | Zbl

[4] Jakobsen, H. P.; Vergne, M. Restriction and expansions of holomorphic representations, Journ. of Funct. Anal., Volume 34 (1979), pp. 29-53 | DOI | MR | Zbl

[5] Knapp, A. Representation theory of Semisimple Lie Groups, An overview based in examples, Princeton Mathematical Series, Princeton Univ. Press, 1986 | MR | Zbl

[6] Kobayashi, T. Harmonic Analysis on Homogeneous Manifolds of Reductive Type and Unitary Representation Theory, Selected Papers on harmonic Analysis, groups and invariants (Amer. Math. Soc. Transl. Ser. 2), Volume 183, K. Nomizu (Editor), 1999, pp. 1-33

[7] Kobayashi, T. Discretely decomposable restrictions of unitary representations of reductive Lie groups - examples and conjectures, Analysis on Homogeneous Spaces and Representation Theory of Lie Groups (Advanced Studies in Pure Mathematics), Volume 26, T. Kobayashi (Editor), Tokyo, 2000, pp. 99-127 (Kinokuniya) | MR | Zbl

[8] Neeb, Karl-Hermann Holomorphy and Convexity in Lie Theory, De Gruyter expositions in mathematics, 28, Walter de Gruyter, 2000 | MR | Zbl

[9] Orsted, B.; Vargas, J. Restriction of square integrable representations: Discrete Spectrum, Duke Math. Journal, Volume 123 (2004), pp. 609-633 | DOI | MR | Zbl

[10] Treves, S. Topological vector spaces, distributions and kernels, Academic Press, New York, 1967 | MR | Zbl

[11] Trombi, P.; Varadarajan, V. Asymptotic behavior of eigenfunctions on a semisimple Lie group: The Discrete Spectrum, Acta Math., Volume 129 (1972), pp. 237-280 | DOI | MR | Zbl

[12] Wallach, N.; Wolf, J. Completeness of Poincare Series for Automorphic Forms Associated to the Integrable Discrete Series, Representation Theory of reductive groups (Progress in Math.), Volume 40, P. Trombi (editor), 1983, pp. 265-281 | MR | Zbl

Cited by Sources: