Extension of holomorphic bundles to the disc (and Serre’s Problem on Stein bundles)
[Prolongements de fibrés holomorphes au disque (et problème de Serre sur les fibrés de Stein)]
Annales de l'Institut Fourier, Tome 57 (2007) no. 2, pp. 517-523.

On montre que des fibrés holomorphes, à fibre n , définis sur des ouverts de par des automorphismes de transition localement constants se prolongent en fibrés holomorphes définis sur la sphère de Riemann. Ceci permet en particulier d’obtenir un exemple de fibré non de Stein sur le disque, avec automorphismes de transition polynomiaux.

Holomorphic bundles, with fiber n , defined on open sets in by locally constant transition automorphisms, are shown to extend to holomorphic bundles on the Riemann sphere. In particular, it allows us to give an example of a non-Stein holomorphic bundle on the unit disc, with polynomial transition automorphisms.

DOI : https://doi.org/10.5802/aif.2267
Classification : 32L05,  32Q28
Mots clés : fibrés holomorphes, variétés de Stein, groupes d’automorphismes de n
@article{AIF_2007__57_2_517_0,
     author = {Rosay, Jean-Pierre},
     title = {Extension of holomorphic bundles to the disc (and Serre{\textquoteright}s Problem on Stein bundles)},
     journal = {Annales de l'Institut Fourier},
     pages = {517--523},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {2},
     year = {2007},
     doi = {10.5802/aif.2267},
     mrnumber = {2310950},
     zbl = {1123.32013},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2267/}
}
Rosay, Jean-Pierre. Extension of holomorphic bundles to the disc (and Serre’s Problem on Stein bundles). Annales de l'Institut Fourier, Tome 57 (2007) no. 2, pp. 517-523. doi : 10.5802/aif.2267. http://www.numdam.org/articles/10.5802/aif.2267/

[1] Ahern, P.; Flores, M.; Rosay, J-P. On + and complete holomorphic vector fields, Proc. A.M.S., Volume 128 (2000), pp. 3107-3113 | Article | MR 1664301 | Zbl 01498912

[2] Ahern, P.; Forstnerič, F. One parameter automorphism groups on 2 , Complex Varables Theory Appl., Volume 27 (1995), pp. 245-268 | MR 1333980 | Zbl 0838.32009

[3] Andersén, E.; Lempert, L. On the group of holomorphic automorphisms of n , Inven. Math., Volume 110 (1992), pp. 371-388 | Article | MR 1185588 | Zbl 0770.32015

[4] Buzzard, G.; Fornaess, J. E. Complete holomorphic vector fields and time-1 maps, Indiana Math. J., Volume 44 (1995), pp. 1175-1182 | MR 1386765 | Zbl 0847.32038

[5] Coeuré, G.; Loeb., J-J. A counterexample to the Serre problem with a bounded domain in 2 ,, Ann. Math., Volume 122 (1985), pp. 329-334 | Article | MR 808221 | Zbl 0585.32030

[6] Demailly, J-P.; Springer Différents exemples de fibrés holomorphes non de Stein, Séminaire P. Lelong, H. Skoda 1976/77, Volume 694 (1978), pp. 15-41 | MR 522471 | Zbl 0418.32011

[7] Demailly, J-P. Un exemple de fibré holomorphe non de Stein à fibre 2 ayant pour base le disque ou le plan, Inven. Math., Volume 48 (1978), pp. 293-302 | Article | MR 508989 | Zbl 0372.32012

[8] Forstnerič, F.; Prezelj, J. Oka’s principle for holomorphic bundles with sprays, Math. Ann., Volume 317 (2000), pp. 117-154 | Article | MR 1760671 | Zbl 0964.32017

[9] Forstnerič, F.; Rosay, J-P. Approximation of biholomorphic mappings by automorphisms of n , Inven. Math., Volume 112 (1993), pp. 323-349 Erratum in Inven. Math. 118 (1994), 573-574 | Article | MR 1213106 | Zbl 0792.32011

[10] Gromov, M. Oka’s principle for holomorphic sections of elliptic bundles, Journal A.M.S., Volume 2 (1989), pp. 851-897 | MR 1001851 | Zbl 0686.32012

[11] Jung, H. Über ganze birationale Transformationen der Ebene, Reine Angew. Math., Volume 184 (1942), pp. 161-174 | Article | MR 8915 | Zbl 0027.08503

[12] Skoda, H. Fibrés holomorphes à base et à fibre de Stein, Inven. Math., Volume 43 (1977), pp. 97-107 | Article | MR 508091 | Zbl 0365.32018

[13] Skoda, H. Fibrés holomorphes à base et fibre de Stein, C. R. Acad. Sci. Paris Série AB, Volume 284 (1977) no. 19, pp. 1199-1202 | MR 437802 | Zbl 0353.32032