A simple Parry number is a real number such that the Rényi expansion of is finite, of the form . We study the palindromic structure of infinite aperiodic words that are the fixed point of a substitution associated with a simple Parry number . It is shown that the word contains infinitely many palindromes if and only if . Numbers satisfying this condition are the so-called confluent Pisot numbers. If then is an Arnoux-Rauzy word. We show that if is a confluent Pisot number then , where is the number of palindromes and is the number of factors of length in . We then give a complete description of the set of palindromes, its structure and properties.
Un nombre de Parry simple est un nombre réel tel que le développement de Rényi de est fini, de la forme . Nous étudions la structure palindromique des mots infinis apériodiques qui sont point fixe d’une substitution associée à un nombre de Parry simple . Nous montrons que le mot contient un nombre infini de palindromes si et seulement si . Les nombres satisfaisant cette condition sont connus sous le nom de nombres de Pisot confluents. Si de plus alors est un mot d’Arnoux-Rauzy. Nous montrons que si est un nombre de Pisot confluent alors , où est le nombre de facteurs de longueur de . Nous donnons aussi une description complète de l’ensemble des palindromes, de sa structure et de ses propriétés.
Keywords: beta-expansions, palindromic complexity
Mot clés : beta-développements, complexité palindromique
@article{AIF_2006__56_7_2131_0, author = {Ambro\v{z}, Petr and Mas\'akov\'a, Zuzana and Pelantov\'a, Edita and Frougny, Christiane}, title = {Palindromic complexity of infinite words associated with simple {Parry} numbers}, journal = {Annales de l'Institut Fourier}, pages = {2131--2160}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {7}, year = {2006}, doi = {10.5802/aif.2236}, zbl = {1121.68089}, mrnumber = {2290777}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2236/} }
TY - JOUR AU - Ambrož, Petr AU - Masáková, Zuzana AU - Pelantová, Edita AU - Frougny, Christiane TI - Palindromic complexity of infinite words associated with simple Parry numbers JO - Annales de l'Institut Fourier PY - 2006 SP - 2131 EP - 2160 VL - 56 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2236/ DO - 10.5802/aif.2236 LA - en ID - AIF_2006__56_7_2131_0 ER -
%0 Journal Article %A Ambrož, Petr %A Masáková, Zuzana %A Pelantová, Edita %A Frougny, Christiane %T Palindromic complexity of infinite words associated with simple Parry numbers %J Annales de l'Institut Fourier %D 2006 %P 2131-2160 %V 56 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2236/ %R 10.5802/aif.2236 %G en %F AIF_2006__56_7_2131_0
Ambrož, Petr; Masáková, Zuzana; Pelantová, Edita; Frougny, Christiane. Palindromic complexity of infinite words associated with simple Parry numbers. Annales de l'Institut Fourier, Volume 56 (2006) no. 7, pp. 2131-2160. doi : 10.5802/aif.2236. http://www.numdam.org/articles/10.5802/aif.2236/
[1] Une caractérisation simple des nombres de Sturm, J. Théor. Nombres Bordeaux, Volume 10 (1998) no. 2, pp. 237-241 | DOI | Numdam | MR | Zbl
[2] Palindrome complexity, Theoret. Comput. Sci., Volume 292 (2003) no. 1, pp. 9-31 (Selected papers in honor of Jean Berstel) | DOI | MR | Zbl
[3] Représentation géométrique de suites de complexité , Bull. Soc. Math. France, Volume 119 (1991) no. 2, pp. 199-215 | Numdam | MR | Zbl
[4] Complete characterization of substitution invariant Sturmian sequences, Integers, Volume 5 (2005) no. 1, pp. A14, 23 pp. (electronic) | MR | Zbl
[5] Factor versus palindromic complexity of uniformly recurrent infinite words (2006) (To appear in Theor. Comp. Sci.) | MR | Zbl
[6] Palindromic complexity of infinite words coding interval exchange transformations, Words 2005, 5 International Conference on Words, actes (Publications du LaCIM), Volume 36, UQÀM, 2005, pp. 113-118
[7] Factor and palindromic complexity for infninite words associated with quadratic non-simple Parry numbers (2006) (Preprint Doppler Institute, Prague)
[8] Pisot-cyclotomic quasilattices and their symmetry semigroups, Quasicrystals and discrete geometry (Toronto, ON, 1995) (Fields Inst. Monogr.), Volume 10, Amer. Math. Soc., Providence, RI, 1998, pp. 15-66 | MR | Zbl
[9] Propriétés arithmétiques de la -numération, Univesité de la Méditeranée (2005) (Ph. D. Thesis)
[10] Recent results on extensions of Sturmian words, Internat. J. Algebra Comput., Volume 12 (2002) no. 1-2, pp. 371-385 International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000) | DOI | MR | Zbl
[11] Infinite words without palindrome (2006) (Preprint)
[12] Invertible susbtitutions and Sturmian words: an application of Rauzy fractals (2006) (To appear in Theoret. Informatics Appl.)
[13] Développements en base de Pisot et répartition modulo , C. R. Acad. Sci. Paris, Volume 285 (1977), pp. 419-421 | MR | Zbl
[14] Comment écrire les nombres entiers dans une base qui n’est pas entière, Acta Math. Hungar., Volume 54 (1989) no. 3-4, pp. 237-241 | DOI | MR | Zbl
[15] On the palindromic complexity of infinite words, Internat. J. Found. Comput. Sci., Volume 15 (2004) no. 2, pp. 293-306 | DOI | MR | Zbl
[16] Beta-integers as natural counting systems for quasicrystals, J. Phys. A, Volume 31 (1998) no. 30, pp. 6449-6472 | DOI | MR | Zbl
[17] Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Volume 4 (1997) no. 1, pp. 67-88 Journées Montoises (Mons, 1994) | MR | Zbl
[18] Combinatorial properties of Arnoux-Rauzy subshifts and applications to Schrödinger operators, Rev. Math. Phys., Volume 15 (2003) no. 7, pp. 745-763 | DOI | MR | Zbl
[19] Epi-Sturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci., Volume 255 (2001) no. 1-2, pp. 539-553 | DOI | MR | Zbl
[20] Palindromes and Sturmian words, Theoret. Comput. Sci., Volume 223 (1999) no. 1-2, pp. 73-85 | DOI | MR | Zbl
[21] Substitutions et -systèmes de numération, Theoret. Comput. Sci., Volume 137 (1995) no. 2, pp. 219-236 | DOI | MR | Zbl
[22] Confluent linear numeration systems, Theoret. Comput. Sci., Volume 106 (1992) no. 2, pp. 183-219 | DOI | MR | Zbl
[23] Complexity of infinite words associated with beta-expansions, Theor. Inform. Appl., Volume 38 (2004) no. 2, pp. 163-185 Corrigendum. Theor. Inform. Appl. 38 (2004), 269–271. | DOI | Numdam | MR | Zbl
[24] Infinite left special branches in words associated with beta expansions (2005) (To appear in J. Autom. Lang. Comb.)
[25] Singular continuous spectrum for palindromic Schrödinger operators, Comm. Math. Phys., Volume 174 (1995) no. 1, pp. 149-159 | DOI | MR | Zbl
[26] Episturmian words and episturmian morphisms, Theoret. Comput. Sci., Volume 276 (2002) no. 1-2, pp. 281-313 | DOI | MR | Zbl
[27] Interval exchange transformations, Math. Z., Volume 141 (1975), pp. 25-31 | DOI | MR | Zbl
[28] Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, 90, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[29] On the -expansions of real numbers, Acta Math. Acad. Sci. Hungar., Volume 11 (1960), pp. 401-416 | DOI | MR | Zbl
[30] Substitution invariant Sturmian bisequences, J. Théor. Nombres Bordeaux, Volume 11 (1999) no. 1, pp. 201-210 Les XXèmes Journées Arithmétiques (Limoges, 1997) | DOI | Numdam | MR | Zbl
[31] Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794, Springer Verlag, 2002 (402 pages) | MR | Zbl
[32] Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, 1294, Springer-Verlag, Berlin, 1987 | MR | Zbl
[33] Échanges d’intervalles et transformations induites, Acta Arith., Volume 34 (1979) no. 4, pp. 315-328 | MR | Zbl
[34] Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, Volume 8 (1957), pp. 477-493 | DOI | MR | Zbl
[35] Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc. (3), Volume 68 (1994) no. 3, pp. 477-498 | DOI | MR | Zbl
[36] On Sturmian sequences which are invariant under some substitutions, Number theory and its applications (Kyoto, 1997) (Dev. Math.), Volume 2, Kluwer Acad. Publ., Dordrecht, 1999, pp. 347-373 | MR | Zbl
Cited by Sources: