We give an intersection theoretic proof of M. Soares’ bounds for the Poincaré-Hopf index of an isolated singularity of a foliation of .
Nous employons des outils de la théorie d’intersection résiduelle pour donner une démonstration de l’inegalité obtenue par M. Soares pour l’indice de Poincaré-Hopf d’une singularité isolée d’un feuilletage de .
Keywords: intersection theory, singularities, foliations
Mot clés : théorie de l’intersection, singularités, feuilletages
@article{AIF_2006__56_1_269_0, author = {Esteves, Eduardo and Vainsencher, Israel}, title = {A note on {M.} {Soares{\textquoteright}} bounds}, journal = {Annales de l'Institut Fourier}, pages = {269--276}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {1}, year = {2006}, doi = {10.5802/aif.2180}, zbl = {1089.32025}, mrnumber = {2228688}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2180/} }
TY - JOUR AU - Esteves, Eduardo AU - Vainsencher, Israel TI - A note on M. Soares’ bounds JO - Annales de l'Institut Fourier PY - 2006 SP - 269 EP - 276 VL - 56 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2180/ DO - 10.5802/aif.2180 LA - en ID - AIF_2006__56_1_269_0 ER -
%0 Journal Article %A Esteves, Eduardo %A Vainsencher, Israel %T A note on M. Soares’ bounds %J Annales de l'Institut Fourier %D 2006 %P 269-276 %V 56 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2180/ %R 10.5802/aif.2180 %G en %F AIF_2006__56_1_269_0
Esteves, Eduardo; Vainsencher, Israel. A note on M. Soares’ bounds. Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 269-276. doi : 10.5802/aif.2180. http://www.numdam.org/articles/10.5802/aif.2180/
[1] The Castelnuovo-Mumford regularity of an integral variety of a vector field on projective space, Math. Res. Lett., Volume 9 (2002), pp. 1-15 | MR | Zbl
[2] Intersection theory, Springer, New York, 1985 | MR | Zbl
[3] Principles of algebraic geometry, John Wiley & Sons, New York, 1978 | MR | Zbl
[4] The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. math., Volume 128 (1997), pp. 495-500 | DOI | MR | Zbl
[5] Bounding Poincaré-Hopf indices and Milnor numbers, Math. Nachrichten, Volume 278 (2005) no. 6, pp. 703-711 | DOI | MR | Zbl
[6] Indices of vector fields and residues of singular holomorphic foliations, Hermann, Paris, 1998 | MR | Zbl
[7] Classes características em geometria algébrica, IMPA, Rio de Janeiro, 1985 | MR
Cited by Sources: