Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups
Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 131-181.

We construct a subalgebra Σ (W n ) of dimension 2·3 n-1 of the group algebra of the Weyl group W n of type B n containing its usual Solomon algebra and the one of 𝔖 n : Σ (W n ) is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras Σ (W n )ZIrr(W n ). Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to W n . In an appendix, P. Baumann and C. Hohlweg present in an explicit and combinatorial way the relation between this construction of the irreducible characters of W n and that of W. Specht.

Nous construisons une sous-algèbre Σ (W n ) de dimension 2·3 n-1 de l’algèbre du groupe de Weyl W n de type B n contenant son algèbre de Solomon usuelle ainsi que celle de 𝔖 n  : Σ (W n ) n’est autre que l’algèbre de Mantaci-Reutenauer mais notre point de vue nous permet de construire un morphisme d’algèbres surjectif Σ (W n )ZIrr(W n ). La construction de Jöllenbeck des caractères irréductibles de 𝔖 n à partir des classes d’équivalence coplaxique se transpose alors à W n . Un appendice à cet article, écrit par P. Baumann et C. Hohlweg, donne le lien combinatoire explicite entre cette construction des caractères irréductibles de W n et celle obtenue par W. Specht en 1932.

DOI: 10.5802/aif.2176
Classification: 05E15
Keywords: descent algebra, hyperoctahedral group, coplactic algebra
Mot clés : algèbre de descente, groupe hyperoctaédral, algèbre coplaxique
Bonnafé, Cédric 1; Hohlweg, Christophe 2

1 Université de Franche-Comté Département de Mathématiques 16 route de Gray 25000 Besançon (France)
2 The Fields Institute 222 College Street Toronto, Ontario M5T 3J1 (Canada)
@article{AIF_2006__56_1_131_0,
     author = {Bonnaf\'e, C\'edric and Hohlweg, Christophe},
     title = {Generalized descent algebra and construction of irreducible characters of~hyperoctahedral groups},
     journal = {Annales de l'Institut Fourier},
     pages = {131--181},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {1},
     year = {2006},
     doi = {10.5802/aif.2176},
     zbl = {1098.20011},
     mrnumber = {2228684},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2176/}
}
TY  - JOUR
AU  - Bonnafé, Cédric
AU  - Hohlweg, Christophe
TI  - Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 131
EP  - 181
VL  - 56
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2176/
DO  - 10.5802/aif.2176
LA  - en
ID  - AIF_2006__56_1_131_0
ER  - 
%0 Journal Article
%A Bonnafé, Cédric
%A Hohlweg, Christophe
%T Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups
%J Annales de l'Institut Fourier
%D 2006
%P 131-181
%V 56
%N 1
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2176/
%R 10.5802/aif.2176
%G en
%F AIF_2006__56_1_131_0
Bonnafé, Cédric; Hohlweg, Christophe. Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups. Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 131-181. doi : 10.5802/aif.2176. http://www.numdam.org/articles/10.5802/aif.2176/

[1] Aguiar, M.; Mahajan, S. The Hopf algebra of signed permutations (in preparation)

[2] Blessenohl, D.; Hohlweg, C.; Schocker, M. A symmetry of the descent algebra of a finite Coxeter group, Adv. in Math., Volume 193 (2005), pp. 416-437 | DOI | MR | Zbl

[3] Blessenohl, D.; Schocker, M. Noncommutative Character Theory of Symmetric groups I, Imperial College press, London, 2005

[4] Bonnafé, C.; Iancu, L. Left cells in type B n with unequal parameters, Represent. Theory, Volume 7 (2003), pp. 587-609 | DOI | MR | Zbl

[5] Bourbaki, N. 4-6, Groupes et algèbres de Lie, Hermann (1968) | MR | Zbl

[6] Geck, M. On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc., Volume 35 (2003) no. 5, pp. 608-614 | DOI | MR | Zbl

[7] Geck, M.; Hiss, G.; Lübeck, F.; Malle, G.; Pfeiffer, G. CHEVIE — A system for computing and procesing generic character tables, Applicable Algebra in Eng. Comm. and Comp., Volume 7 (1996), pp. 175-210 | DOI | MR | Zbl

[8] Geck, M.; Pfeiffer, G. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Math. Soc. Mon. New Series, 21, LMS, 2000 | MR | Zbl

[9] Geissinger, L. Hopf algebras of symmetric functions and class functions, Comb. Represent. Groupe symétrique, Acte Table Ronde C.N.R.S (Lecture Notes in Math.), Volume 579, Strasbourg, 1976 (1977), pp. 168-181 | MR | Zbl

[10] Humphreys, J.E. Reflection groups and Coxeter groups, 29, Cambridge university press, 1990 | MR | Zbl

[11] Jőllenbeck, A. Nichtkommutative Charaktertheorie der symmetrischen Gruppen, Bayreuth. Math. Schr., Volume 56 (1999), pp. 1-41 | MR | Zbl

[12] Lascoux, A.; Schützenberger, M. P. Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics (Quad. “Ricerca Sci.”), Volume 109, CNR, Rome, Naples, 1978 (1981), pp. 129-156 | MR | Zbl

[13] Lusztig, G. Characters of reductive groups over a finite field, Annals of Math. Studies, 107, Princeton University Press, 1984 | MR | Zbl

[14] Macdonald, I. G. Symmetric functions and Hall Polynomials, Oxford mathematical monographs, Oxford science publications, The Clarendon press, Oxford university press, 1995 (with contributions by A. Zelevinsky) | MR | Zbl

[15] Malvenuto, C.; Reutenauer, C. Duality between quasi-symmetric functions ans Solomon descent algebra, J. Algebra, Volume 177 (1995), pp. 967-982 | DOI | MR | Zbl

[16] Mantaci, R.; Reutenauer, C. A generalization of Solomon’s algebra for hyperoctahedral groups and other wreath products, Comm. Algebra, Volume 23 (1995) no. 1, pp. 27-56 | DOI | MR | Zbl

[17] Poirier, S.; Reutenauer, C. Algèbres de Hopf de tableaux, Ann. Sci. Math., Québec, Volume 19 (1996), pp. 79-90 | MR | Zbl

[18] Solomon, L. A Mackey formula in the group ring of a Coxeter group, J. Algebra, Volume 41 (1976), pp. 255-268 | DOI | MR | Zbl

[19] Specht, W. Eine Verallgemeinerung der symmetrischen Gruppe, Schriften Math. Seminar Berlin, Volume 1 (1932), pp. 1-32 | Zbl

[20] Stanley, R. P. Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A, Volume 32 (1982), pp. 132-161 | DOI | MR | Zbl

[21] Thibon, J. Y. Lectures on Noncommutative Symmetric Functions, Interaction of Combinatorics and Representation Theory (MSJ Memoirs), Volume 11, Math. Soc. of Japan, 2001, pp. 39-94 | MR | Zbl

Cited by Sources: