Let be a Gorenstein, -factorial, toric Fano variety. We prove two conjectures on the maximal Picard number of in terms of its dimension and its pseudo-index, and characterize the boundary cases. Equivalently, we determine the maximal number of vertices of a simplicial reflexive polytope.
Soit une variété de Fano torique, Gorenstein et -factorielle. Nous démontrons deux conjectures sur le nombre de Picard maximal de en fonction de sa dimension et de son pseudo-indice, et nous caractérisons les cas limites. De façon équivalente, nous déterminons le nombre maximal de sommets d’un polytope réflexif simplicial.
Keywords: toric varieties, Fano varieties, reflexive polytopes, Fano polytopes
Mot clés : variétés toriques, variétés de Fano, polytopes réflexifs, polytopes de Fano
@article{AIF_2006__56_1_121_0, author = {Casagrande, Cinzia}, title = {The number of vertices of a {Fano} polytope}, journal = {Annales de l'Institut Fourier}, pages = {121--130}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {1}, year = {2006}, doi = {10.5802/aif.2175}, zbl = {1095.52005}, mrnumber = {2228683}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2175/} }
TY - JOUR AU - Casagrande, Cinzia TI - The number of vertices of a Fano polytope JO - Annales de l'Institut Fourier PY - 2006 SP - 121 EP - 130 VL - 56 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2175/ DO - 10.5802/aif.2175 LA - en ID - AIF_2006__56_1_121_0 ER -
Casagrande, Cinzia. The number of vertices of a Fano polytope. Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 121-130. doi : 10.5802/aif.2175. http://www.numdam.org/articles/10.5802/aif.2175/
[1] Generalized Mukai conjecture for special Fano varieties, Central European Journal of Mathematics, Volume 2 (2004) no. 2, pp. 272-293 | DOI | MR | Zbl
[2] Toric Fano threefolds, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, Volume 45 (1981) no. 4, pp. 704-717 (in Russian). English translation: Mathematics of the USSR Izvestiya, 19 (1982), p. 13-25 | MR | Zbl
[3] Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, Journal of Algebraic Geometry, Volume 3 (1994), pp. 493-535 | MR | Zbl
[4] On the classification of toric Fano 4-folds, Journal of Mathematical Sciences (New York), Volume 94 (1999), pp. 1021-1050 | DOI | MR | Zbl
[5] Sur une conjecture de Mukai, Commentarii Mathematici Helvetici, Volume 78 (2003), pp. 601-626 | DOI | MR | Zbl
[6] Toric Fano varieties and birational morphisms, International Mathematics Research Notices, Volume 27 (2003), pp. 1473-1505 | DOI | MR | Zbl
[7] Characterizations of projective space and applications to complex symplectic geometry, Higher Dimensional Birational Geometry (Advanced Studies in Pure Mathematics), Volume 35, Mathematical Society of Japan, 2002, pp. 1-89 | MR | Zbl
[8] Higher-Dimensional Algebraic Geometry, Universitext, Springer Verlag, 2001 | MR | Zbl
[9] Fano varieties, Higher Dimensional Varieties and Rational Points (Bolyai Society Mathematical Studies), Volume 12, Springer Verlag, Budapest, 2001 (2003), pp. 93-132 | MR
[10] Combinatorial Convexity and Algebraic Geometry, Graduate Texts in Mathematics, 168, Springer Verlag, 1996 | MR | Zbl
[11] Convex Polytopes, Graduate Texts in Mathematics, 221, Springer Verlag, 2003 (first edition 1967) | MR | Zbl
[12] Complete toric varieties with reductive automorphism group (2004) (preprint math.AG/0407491)
[13] Gorenstein toric Fano varieties, Manuscripta Mathematica, Volume 116 (2005) no. 2, pp. 183-210 | DOI | MR | Zbl
[14] A characterization of products of projective spaces (2003) (preprint, available at the author’s web page http://www.science.unitn.it/~occhetta/)
[15] Toward the classification of higher-dimensional toric Fano varieties, Tôhoku Mathematical Journal, Volume 52 (2000), pp. 383-413 | DOI | MR | Zbl
[16] Toric Fano varieties and systems of roots, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, Volume 48 (1984) no. 2, pp. 237-263 (in Russian). English translation: Mathematics of the USSR Izvestiya, 24 (1985), p. 221-244 | MR | Zbl
[17] The classification of Fano 3-folds with torus embeddings, Tokyo Journal of Mathematics, Volume 5 (1982), pp. 37-48 | DOI | MR | Zbl
[18] On a conjecture of Mukai, Manuscripta Mathematica, Volume 68 (1990), pp. 135-141 | DOI | MR | Zbl
[19] Toric Mori theory and Fano manifolds, Geometry of Toric Varieties (Séminaires et Congrès), Volume 6, Société Mathématique de France, 2002, pp. 249-272 | MR | Zbl
Cited by Sources: