Introduction to magnetic resonance imaging for mathematicians
Annales de l'Institut Fourier, Volume 54 (2004) no. 5, pp. 1697-1716.

The basic concepts and models used in the study of nuclear magnetic resonance are introduced. A simple imaging experiment is described, as well as, the reduction of the problem of selective excitation to a classical problem in inverse scattering.

Nous introduisons les concepts et modèles de base en résonance magnétique nucléaire (RMN). Nous décrivons une expérience d'imagerie simple ainsi que la réduction du problème d'excitation sélective à un problème de scattering inverse.

DOI: 10.5802/aif.2063
Classification: 78A46,  81V35,  65R10,  65R32
Epstein, Charles L. 1

1 University of Pennsylvania, Department of Mathematics, Philadelphia (USA)
@article{AIF_2004__54_5_1697_0,
     author = {Epstein, Charles L.},
     title = {Introduction to magnetic resonance imaging for mathematicians},
     journal = {Annales de l'Institut Fourier},
     pages = {1697--1716},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     doi = {10.5802/aif.2063},
     zbl = {02162438},
     mrnumber = {2127862},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2063/}
}
TY  - JOUR
AU  - Epstein, Charles L.
TI  - Introduction to magnetic resonance imaging for mathematicians
JO  - Annales de l'Institut Fourier
PY  - 2004
DA  - 2004///
SP  - 1697
EP  - 1716
VL  - 54
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2063/
UR  - https://zbmath.org/?q=an%3A02162438
UR  - https://www.ams.org/mathscinet-getitem?mr=2127862
UR  - https://doi.org/10.5802/aif.2063
DO  - 10.5802/aif.2063
LA  - en
ID  - AIF_2004__54_5_1697_0
ER  - 
%0 Journal Article
%A Epstein, Charles L.
%T Introduction to magnetic resonance imaging for mathematicians
%J Annales de l'Institut Fourier
%D 2004
%P 1697-1716
%V 54
%N 5
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2063
%R 10.5802/aif.2063
%G en
%F AIF_2004__54_5_1697_0
Epstein, Charles L. Introduction to magnetic resonance imaging for mathematicians. Annales de l'Institut Fourier, Volume 54 (2004) no. 5, pp. 1697-1716. doi : 10.5802/aif.2063. http://www.numdam.org/articles/10.5802/aif.2063/

[AKNS] M. Ablowitz, D. Kaup, A. Newell & H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies Appl. Math. 53 (1974) p. 249-315 | MR | Zbl

[Ab] A. Abragam, Principles of Nuclear Magnetism, Clarendon Press, 1983

[BC] R. Beals & R. Coifman, Scattering and inverse scattering for first order systems, CPAM 37 (1984) p. 39-90 | MR | Zbl

[Bl] F. Bloch, Nuclear induction, Phys. Review 70 (1946) p. 460-474

[Cal] P.T. Callaghan, Principles of nuclear magnetic resonance microscopy, Clarendon Press, 1993

[Ca1] J. Carlson, Exact solutions for selective-excitation pulses, J. Magn. Res. 94 (1991) p. 376-386

[Ca2] J. Carlson, Exact solutions for selective-excitation pulses. II. Excitation pulses with phase control, J. Magn. Res. 97 (1992) p. 65-78

[Ep] C.L. Epstein, Minimum power pulse synthesis via the inverse scattering transform, J. Magn. Res. 167 (2004) p. 185-210

[EBW] R. Ernst, G. Bodenhausen & A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions, Clarendon, 1987

[FT] L. Faddeev & L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Verlag, 1987 | MR | Zbl

[Gr1] F. Grünbaum, Trying to beat Heisenberg, Lecture Notes in Pure and Applied Math. vol. 122, Marcel Dekker, 1989, p. 657-666 | Zbl

[Gr2] F. Grünbaum, Concentrating a potential and its scattering transform for a discrete version of the Schrödinger and Zakharov-Shabat operators, Physica D 44 (1990) p. 92-98 | MR | Zbl

[GH] F. Grünbaum & A. Hasenfeld, An exploration of the invertibility of the Bloch transform, Inverse Problems 2 (1986) p. 75-81 | MR | Zbl

[Ha] E.M. Haacke, R.W. Brown, M.R. Thompson & R. Venkatesan, Magnetic Resonance Imaging, Wiley-Liss, 1999

[Ho1] D. Hoult, The principle of reciprocity in signal strength calculations - A mathematical guide, Concepts Magn. Res. 12 (2000) p. 173-187

[Ho2] D. Hoult, Sensitivity and power deposition in a high field imaging experiment, JMRI 12 (2000) p. 46-67

[Ma] J. Magland, Discrete Inverse Scattering Theory and NMR pulse design, PhD. Thesis, University of Pennsylvania, 2004

[Me] E. Merzbacher, Quantum Mechanics, 2nd ed., John Wiler \& Sons, 1970 | MR | Zbl

[PRNM] J. Pauly, P. Le Roux, D. Nishimura & A. Macovski, Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Trans. Med. Imaging 10 (1991) p. 53-65

[MR] D.E. Rourke & P.G. Morris, The inverse scattering transform and its use in the exact inversion of the Bloch equation for noninteracting spins, J. Magn. Res. 99 (1992) p. 118-138

[SL1] M. Shinnar & J. Leigh, The application of spinors to pulse synthesis and analysis, Magn. Res. in Med. 12 (1989) p. 93-98

[SL2] M. Shinnar & J. Leigh, Inversion of the Bloch equation, J. Chem. Phys. 98 (1993) p. 6121-6128

[To] H.C. Torrey, Bloch equations with diffusion terms, Phys. Review 104 (1956) p. 563-565

Cited by Sources: