Soit l’anneau des entiers d’un corps de nombres totalement réel de degré . Nous étudions un nombre premier fixé, la réduction modulo de l’espace de modules classifiant les -variétés abéliennes séparablement polarisées de dimension . Nous construisons une stratification schématique par les types du lieu de Rapoport et étudions sa relation avec la stratification par les pentes. En particulier, nous retrouvons les résultats principaux de Goren et Oort [J. Alg. Geom., 2000] sur les stratifications lorsque n’est pas ramifié dans . Nous démontrons également la conjecture de Grothendieck forte pour les espaces de modules dans certains cas, notamment lorsque est totalement ramifié dans .
Let be the ring of integers of a totally real field of degree . We study the reduction of the moduli space of separably polarized abelian -varieties of dimension modulo for a fixed prime . The invariants and related conditions for the objects in the moduli space are discussed. We construct a scheme-theoretic stratification by -types on the Rapoport locus and study the relation with the slope stratification. In particular, we recover the main results of Goren and Oort [J. Alg. Geom., 2000] on the stratifications when is unramified in . We also prove the strong Grothendieck conjecture for the moduli space in some restricted cases, particularly when is totally ramified in .
Classification : 14G35, 14L05
Mots clés : variétés de Hilbert-Blumenthal, modules de Dieudonné, stratifications, déformations
@article{AIF_2003__53_7_2105_0, author = {Yu, Chia-Fu}, title = {On reduction of {Hilbert-Blumenthal} varieties}, journal = {Annales de l'Institut Fourier}, pages = {2105--2154}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {7}, year = {2003}, doi = {10.5802/aif.2002}, zbl = {02093468}, mrnumber = {2044169}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2002/} }
TY - JOUR AU - Yu, Chia-Fu TI - On reduction of Hilbert-Blumenthal varieties JO - Annales de l'Institut Fourier PY - 2003 DA - 2003/// SP - 2105 EP - 2154 VL - 53 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2002/ UR - https://zbmath.org/?q=an%3A02093468 UR - https://www.ams.org/mathscinet-getitem?mr=2044169 UR - https://doi.org/10.5802/aif.2002 DO - 10.5802/aif.2002 LA - en ID - AIF_2003__53_7_2105_0 ER -
Yu, Chia-Fu. On reduction of Hilbert-Blumenthal varieties. Annales de l'Institut Fourier, Tome 53 (2003) no. 7, pp. 2105-2154. doi : 10.5802/aif.2002. http://www.numdam.org/articles/10.5802/aif.2002/
[BG] On the non-ordinary locus in Hilbert-Blumenthal surfaces, Math. Ann., Volume 313 (1999), pp. 475-506 | Article | MR 1678541 | Zbl 0919.14014
[C] Newton polygons as lattice points, Amer. J. Math., Volume 122 (2000), pp. 967-990 | MR 1781927 | Zbl 1057.11506
[CN] Bad reduction of the Siegel moduli scheme of genus two with -level structure, Amer. J. Math., Volume 112 (1990), pp. 1003-1071 | Article | MR 1081813 | Zbl 0734.14010
[dJO] Purity of the stratification by Newton polygons, J. Amer. Math. Soc., Volume 13 (2000), pp. 209-241 | Article | MR 1703336 | Zbl 0954.14007
[DP] Singularités des espaces de modules de Hilbert en caractéristiques divisant le discriminant, Compositio Math., Volume 90 (1994), pp. 59-79 | Numdam | MR 1266495 | Zbl 0826.14027
[GO] Stratifications of Hilbert modular varieties in positive characteristic, J. Algebraic Geom., Volume 9 (2000), pp. 111-154 | MR 1713522 | Zbl 0973.14010
[Gr] Groupes de Barsotti-Tate et Cristaux de Dieudonné, Les Presses de l'Université de Montréal, 1974 | MR 417192 | Zbl 0331.14021
[K1] Isocrystal with additional structure, Compositio Math., Volume 56 (1985), pp. 201-220 | Numdam | MR 809866 | Zbl 0597.20038
[K2] Points on some Shimura varieties over finite fields, J. Amer. Math. Soc., Volume 5 (1992), pp. 373-444 | Article | MR 1124982 | Zbl 0796.14014
[LO] Moduli of Supersingular Abelian Varieties, Lecture Notes in Math, vol. 1680, Springer-Verlag, 1998 | MR 1611305 | Zbl 0920.14021
[Me] The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Math, 264, Springer-Verlag, 1972 | MR 347836 | Zbl 0243.14013
[Mu] Abelian Varieties, Oxford University Press, 1974 | Zbl 0223.14022
[N] An algorithm for computing moduli of abelian varieties, Ann. Math., Volume 101 (1975), pp. 499-509 | Article | MR 389928 | Zbl 0309.14031
[NO] Moduli of abelian varieties, Ann. Math., Volume 112 (1980), pp. 413-439 | Article | MR 595202 | Zbl 0483.14010
[O1] Moduli of abelian varieties and Newton polygons, C. R. Acad. Sci. Paris, Sér. I Math., Volume 312 (1991), pp. 385-389 | MR 1096617 | Zbl 0734.14016
[O2] Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. Math., Volume 152 (2000), pp. 183-206 | Article | MR 1792294 | Zbl 0991.14016
[O3] Newton Polygon strata in the moduli space of abelian varieties, Moduli of Abelian Varieties (Progress in Mathematics), Volume 195 (2001), pp. 417-440 | Zbl 01644006
[O4] Endomorphism algebras of abelian varieties, Algebraic geometry and commutative algebra, in honor of M. Nagata (1988), pp. 469-502 | MR 977774 | Zbl 0697.14029
[P] Arithmetic models for Hilbert modular varieties, Compositio Math., Volume 98 (1995), pp. 43-76 | Numdam | MR 1353285 | Zbl 0890.14010
[R] Compactifications de l'espaces de modules de Hilbert-Blumenthal, Compositio Math., Volume 36 (1978), pp. 255-335 | Numdam | MR 515050 | Zbl 0386.14006
[RR] On the classification and specialization of F-isocrystals with additional structure, Compositio Math., Volume 103 (1996), pp. 153-181 | Numdam | MR 1411570 | Zbl 0874.14008
[RZ] Period Spaces for -divisible groups, Ann. Math. Studies, 141, Princeton Univ. Press, 1996 | MR 1393439 | Zbl 0873.14039
[S] Local fields, GTM, 67, Springer-Verlag, 1979 | MR 554237 | Zbl 0423.12016
[Y1] On the supersingular locus of Hilbert-Blumenthal 4-folds, J. Alg. Geom., Volume 12 (2003), pp. 653-698 | Article | MR 1993760 | Zbl 1059.14031
[Y2] Lifting abelian varieties with additional structures, Math. Z., Volume 242 (2002), pp. 427-441 | Article | MR 1985459 | Zbl 1051.14052
[Z1] Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte Math., Teubner, Leipzig, 1984 | MR 767090 | Zbl 0578.14039
[Z2] The display of a formal -divisible groups, Cohomologies -adiques et applications arithmétiques (Astérisque), Volume 278 (2002), pp. 127-248 | Zbl 1008.14008
[Z3] Isogenieklassen von Punkten von Shimuramannigfaltigkeiten mit Werten in einem endlichen Körper, Math. Nachr., Volume 112 (1983), pp. 103-124 | Article | MR 726854 | Zbl 0604.14029
Cité par Sources :