We describe new combinatorial methods for constructing explicit free resolutions of by -modules when is a group of fractions of a monoid where enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for computing the homology of . Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.
Nous décrivons de nouvelles méthodes combinatoires fournissant des résolutions explicites du module trivial par des -modules libres lorsque est le groupe de fractions d’un monoïde possédant suffisamment de ppcm (“monoïde localement gaussien”), et donc, permettant de calculer l’homologie de . Nos constructions s’appliquent en particulier à tous les groupes d’Artin–Tits de type de Coexeter fini. D’un point de vue technique, les démonstrations reposent sur les propriétés des ppcm dans un monoïde.
Keywords: free resolution, finite resolution, homology, contacting homotopy, braid groups, Artin groups
Mot clés : résolution libre, résolution finie, homologie, homotopie de contact, groupes de tresses, groupes d'Artin
@article{AIF_2003__53_2_489_0, author = {Dehornoy, Patrick and Lafont, Yves}, title = {Homology of gaussian groups}, journal = {Annales de l'Institut Fourier}, pages = {489--540}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {2}, year = {2003}, doi = {10.5802/aif.1951}, mrnumber = {1990005}, zbl = {1100.20036}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1951/} }
TY - JOUR AU - Dehornoy, Patrick AU - Lafont, Yves TI - Homology of gaussian groups JO - Annales de l'Institut Fourier PY - 2003 SP - 489 EP - 540 VL - 53 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1951/ DO - 10.5802/aif.1951 LA - en ID - AIF_2003__53_2_489_0 ER -
%0 Journal Article %A Dehornoy, Patrick %A Lafont, Yves %T Homology of gaussian groups %J Annales de l'Institut Fourier %D 2003 %P 489-540 %V 53 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1951/ %R 10.5802/aif.1951 %G en %F AIF_2003__53_2_489_0
Dehornoy, Patrick; Lafont, Yves. Homology of gaussian groups. Annales de l'Institut Fourier, Volume 53 (2003) no. 2, pp. 489-540. doi : 10.5802/aif.1951. http://www.numdam.org/articles/10.5802/aif.1951/
[1] Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR ; transl. Math. Notes Acad. Sci. USSR, Volume 36 ; 36 (1984 ; 1984) no. 1 ; 1, p. 25-34 ; 505-510 | MR | Zbl
[2] A geometric rational form for Artin groups of FC type, Geometriae Dedicata, Volume 79 (2000), pp. 277-289 | DOI | MR | Zbl
[3] The cohomology ring of the colored braid group, Mat. Zametki, Volume 5 (1969), pp. 227-231 | MR | Zbl
[4] Toplogical invariants of algebraic functions II, Funkt. Anal. Appl., Volume 4 (1970), pp. 91-98 | DOI | MR | Zbl
[5] The dual braid monoid (Preprint) | Numdam | MR
[6] Non-positively curved aspects of Artin groups of finite type, Geometry \& Topology, Volume 3 (1999), pp. 269-302 | DOI | MR | Zbl
[7] A new approach to the word problem in the braid groups, Advances in Math., Volume 139 (1998) no. 2, pp. 322-353 | DOI | MR | Zbl
[8] Sur les groupes de tresses (d'après V.I. Arnold), Sém. Bourbaki, exp. no 401 (1971) (Springer Lect. Notes in Math.), Volume 317 (1973), pp. 21-44 | Numdam | Zbl
[9] Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | DOI | MR | Zbl
[10] Cohomology of groups, Springer, 1982 | MR | Zbl
[11] Homological Algebra, Princeton University Press, Princeton, 1956 | MR | Zbl
[12] Artin groups of finite type are biautomatic, Math. Ann., Volume 292 (1992) no. 4, pp. 671-683 | DOI | EuDML | MR | Zbl
[13] Geodesic automation and growth functions for Artin groups of finite type, Math. Ann., Volume 301 (1995) no. 2, pp. 307-324 | DOI | EuDML | MR | Zbl
[14] Bestvina's normal form complex and the homology of Garside groups (Preprint) | MR | Zbl
[15] The algebraic Theory of Semigroups, vol. 1, AMS Surveys, Volume 7 (1961) | Zbl
[16] Cohomology of braid spaces, Bull. Amer. Math. Soc., Volume 79 (1973), pp. 763-766 | DOI | MR | Zbl
[17] Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., Volume 78 (1988), pp. 167-206 | MR | Zbl
[18] Cohomology of Artin groups, Math. Research Letters, Volume 3 (1996), pp. 296-297 | MR | Zbl
[19] The top-cohomology of Artin groups with coefficients in rank 1 local systems over Z, Topology Appl., Volume 78 (1997) no. 1, pp. 5-20 | DOI | MR | Zbl
[20] Deux propriétés des groupes de tresses, C. R. Acad. Sci. Paris, Volume 315 (1992), pp. 633-638 | MR | Zbl
[21] Gaussian groups are torsion free, J. of Algebra, Volume 210 (1998), pp. 291-297 | DOI | MR | Zbl
[22] Braids and self-distributivity, Progress in Math., vol. 192, Birkhäuser, 2000 | MR | Zbl
[23] Groupes de Garside, Ann. Sci. École Norm. Sup., Volume 35 (2002), pp. 267-306 | EuDML | Numdam | MR | Zbl
[24] Complete group presentations (J. Algebra, to appear.) | MR
[25] Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc., Volume 79 (1999) no. 3, pp. 569-604 | DOI | MR | Zbl
[26] Les immeubles des groupes de tresses généralisés, Invent. Math., Volume 17 (1972), pp. 273-302 | DOI | EuDML | MR | Zbl
[27] Algorithms for positive braids, Quart. J. Math. Oxford, Volume 45 (1994) no. 2, pp. 479-497 | DOI | MR | Zbl
[28] Word Processing in Groups, Jones \& Bartlett Publ., 1992 | MR | Zbl
[29] Cohomology of the braid group mod. 2, Funct. Anal. Appl., Volume 4 (1970), pp. 143-151 | DOI | MR | Zbl
[30] The braid group and other groups, Quart. J. Math. Oxford, Volume 20 (1969) no. 78, pp. 235-254 | DOI | MR | Zbl
[31] The cohomology of braid groups of series C and D and certain stratifications, Funkt. Anal. i Prilozhen., Volume 12 (1978) no. 2, pp. 76-77 | MR | Zbl
[32] Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra, Volume 65 (1990), pp. 263-275 | DOI | MR | Zbl
[33] A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier), J. Pure Appl. Algebra, Volume 98 (1995), pp. 229-244 | DOI | MR | Zbl
[34] Church-Rosser property and homology of monoids, Math. Struct. Comput. Sci, Volume 1 (1991), pp. 297-326 | DOI | MR | Zbl
[35] Higher syzygies, in `Une dégustation topologique: Homotopy theory in the Swiss Alps', Contemp. Math., Volume 265 (2000), pp. 99-127 | MR | Zbl
[36] Petits groupes gaussiens (2000) (Thèse de doctorat, Université de Caen)
[37] The center of thin Gaussian groups, J. Algebra, Volume 245 (2001) no. 1, pp. 92-122 | DOI | MR | Zbl
[38] Topology of the complement of real hyperplanes in , Invent. Math., Volume 88 (1987) no. 3, pp. 603-618 | DOI | EuDML | MR | Zbl
[39] The homotopy type of Artin groups, Math. Res. Letters, Volume 1 (1994), pp. 565-577 | MR | Zbl
[40] Extraction of roots in Garside groups, Comm. in Algebra, Volume 30 (2002) no. 6, pp. 2915-2927 | DOI | MR | Zbl
[41] Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra, Volume 49 (1987), pp. 201-217 | DOI | MR | Zbl
[42] The homological algebra of Artin groups, Math. Scand., Volume 75 (1995), pp. 5-43 | EuDML | MR | Zbl
[43] A finiteness condition for rewriting systems, revision by F. Otto and Y. Kobayashi, Theoret. Compt. Sci., Volume 131 (1994), pp. 271-294 | MR | Zbl
[44] The cohomology of pregroups, Conference on Group Theory, Lecture Notes in Math., Volume 319 (1973), pp. 169-182 | MR | Zbl
[45] Finite state algorithms for the braid group, Circulated notes (1988)
[46] Cohomologies of braid groups, Functional Anal. Appl., Volume 12 (1978), pp. 135-137 | DOI | Zbl
[47] Braid groups and loop spaces, Uspekhi Mat. Nauk, Volume 54 (1999) no. 2, pp. 3-84 | MR | Zbl
Cited by Sources: