Homology of gaussian groups
Annales de l'Institut Fourier, Volume 53 (2003) no. 2, pp. 489-540.

We describe new combinatorial methods for constructing explicit free resolutions of by G-modules when G is a group of fractions of a monoid where enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for computing the homology of G. Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.

Nous décrivons de nouvelles méthodes combinatoires fournissant des résolutions explicites du module trivial par des G-modules libres lorsque G est le groupe de fractions d’un monoïde possédant suffisamment de ppcm (“monoïde localement gaussien”), et donc, permettant de calculer l’homologie de G. Nos constructions s’appliquent en particulier à tous les groupes d’Artin–Tits de type de Coexeter fini. D’un point de vue technique, les démonstrations reposent sur les propriétés des ppcm dans un monoïde.

DOI: 10.5802/aif.1951
Classification: 20J06, 18G35, 20M50, 20F36
Keywords: free resolution, finite resolution, homology, contacting homotopy, braid groups, Artin groups
Mot clés : résolution libre, résolution finie, homologie, homotopie de contact, groupes de tresses, groupes d'Artin
Dehornoy, Patrick 1; Lafont, Yves 2

1 Université de Caen, Laboratoire de Mathématiques Nicolas Oresme, 14032 Caen (France)
2 Institut Mathématique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 9 (France)
@article{AIF_2003__53_2_489_0,
     author = {Dehornoy, Patrick and Lafont, Yves},
     title = {Homology of gaussian groups},
     journal = {Annales de l'Institut Fourier},
     pages = {489--540},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {2},
     year = {2003},
     doi = {10.5802/aif.1951},
     mrnumber = {1990005},
     zbl = {1100.20036},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1951/}
}
TY  - JOUR
AU  - Dehornoy, Patrick
AU  - Lafont, Yves
TI  - Homology of gaussian groups
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 489
EP  - 540
VL  - 53
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1951/
DO  - 10.5802/aif.1951
LA  - en
ID  - AIF_2003__53_2_489_0
ER  - 
%0 Journal Article
%A Dehornoy, Patrick
%A Lafont, Yves
%T Homology of gaussian groups
%J Annales de l'Institut Fourier
%D 2003
%P 489-540
%V 53
%N 2
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.1951/
%R 10.5802/aif.1951
%G en
%F AIF_2003__53_2_489_0
Dehornoy, Patrick; Lafont, Yves. Homology of gaussian groups. Annales de l'Institut Fourier, Volume 53 (2003) no. 2, pp. 489-540. doi : 10.5802/aif.1951. http://www.numdam.org/articles/10.5802/aif.1951/

[1] S.I. Adyan Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR ; transl. Math. Notes Acad. Sci. USSR, Volume 36 ; 36 (1984 ; 1984) no. 1 ; 1, p. 25-34 ; 505-510 | MR | Zbl

[2] J. Altobelli; R. Charney A geometric rational form for Artin groups of FC type, Geometriae Dedicata, Volume 79 (2000), pp. 277-289 | DOI | MR | Zbl

[3] V.I. Arnold The cohomology ring of the colored braid group, Mat. Zametki, Volume 5 (1969), pp. 227-231 | MR | Zbl

[4] V.I. Arnold Toplogical invariants of algebraic functions II, Funkt. Anal. Appl., Volume 4 (1970), pp. 91-98 | DOI | MR | Zbl

[5] D. Bessis The dual braid monoid (Preprint) | Numdam | MR

[6] M. Bestvina Non-positively curved aspects of Artin groups of finite type, Geometry \& Topology, Volume 3 (1999), pp. 269-302 | DOI | MR | Zbl

[7] J. Birman; K.H. Ko; S.J. Lee A new approach to the word problem in the braid groups, Advances in Math., Volume 139 (1998) no. 2, pp. 322-353 | DOI | MR | Zbl

[8] E. Brieskorn Sur les groupes de tresses (d'après V.I. Arnold), Sém. Bourbaki, exp. no 401 (1971) (Springer Lect. Notes in Math.), Volume 317 (1973), pp. 21-44 | Numdam | Zbl

[9] E. Brieskorn; K. Saito Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | DOI | MR | Zbl

[10] K.S. Brown Cohomology of groups, Springer, 1982 | MR | Zbl

[11] H. Cartan; S. Eilenberg Homological Algebra, Princeton University Press, Princeton, 1956 | MR | Zbl

[12] R. Charney Artin groups of finite type are biautomatic, Math. Ann., Volume 292 (1992) no. 4, pp. 671-683 | DOI | EuDML | MR | Zbl

[13] R. Charney Geodesic automation and growth functions for Artin groups of finite type, Math. Ann., Volume 301 (1995) no. 2, pp. 307-324 | DOI | EuDML | MR | Zbl

[14] R. Charney; J. Meier; K. Whittlesey Bestvina's normal form complex and the homology of Garside groups (Preprint) | MR | Zbl

[15] A.H. Clifford; G.B. Preston The algebraic Theory of Semigroups, vol. 1, AMS Surveys, Volume 7 (1961) | Zbl

[16] F. Cohen Cohomology of braid spaces, Bull. Amer. Math. Soc., Volume 79 (1973), pp. 763-766 | DOI | MR | Zbl

[17] F. Cohen Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., Volume 78 (1988), pp. 167-206 | MR | Zbl

[18] C. de Concini; M. Salvetti Cohomology of Artin groups, Math. Research Letters, Volume 3 (1996), pp. 296-297 | MR | Zbl

[19] C. de Concini; M. Salvetti; F. Stumbo The top-cohomology of Artin groups with coefficients in rank 1 local systems over Z, Topology Appl., Volume 78 (1997) no. 1, pp. 5-20 | DOI | MR | Zbl

[20] P. Dehornoy Deux propriétés des groupes de tresses, C. R. Acad. Sci. Paris, Volume 315 (1992), pp. 633-638 | MR | Zbl

[21] P. Dehornoy Gaussian groups are torsion free, J. of Algebra, Volume 210 (1998), pp. 291-297 | DOI | MR | Zbl

[22] P. Dehornoy Braids and self-distributivity, Progress in Math., vol. 192, Birkhäuser, 2000 | MR | Zbl

[23] P. Dehornoy Groupes de Garside, Ann. Sci. École Norm. Sup., Volume 35 (2002), pp. 267-306 | EuDML | Numdam | MR | Zbl

[24] P. Dehornoy Complete group presentations (J. Algebra, to appear.) | MR

[25] P. Dehornoy; L. Paris Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc., Volume 79 (1999) no. 3, pp. 569-604 | DOI | MR | Zbl

[26] P. Deligne Les immeubles des groupes de tresses généralisés, Invent. Math., Volume 17 (1972), pp. 273-302 | DOI | EuDML | MR | Zbl

[27] E.A. Elrifai; H.R. Morton Algorithms for positive braids, Quart. J. Math. Oxford, Volume 45 (1994) no. 2, pp. 479-497 | DOI | MR | Zbl

[28] D. Epstein \& al. Word Processing in Groups, Jones \& Bartlett Publ., 1992 | MR | Zbl

[29] D.B. Fuks Cohomology of the braid group mod. 2, Funct. Anal. Appl., Volume 4 (1970), pp. 143-151 | DOI | MR | Zbl

[30] F.A. Garside The braid group and other groups, Quart. J. Math. Oxford, Volume 20 (1969) no. 78, pp. 235-254 | DOI | MR | Zbl

[31] V.V. Goryunov The cohomology of braid groups of series C and D and certain stratifications, Funkt. Anal. i Prilozhen., Volume 12 (1978) no. 2, pp. 76-77 | MR | Zbl

[32] Y. Kobayashi Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra, Volume 65 (1990), pp. 263-275 | DOI | MR | Zbl

[33] Y. Lafont A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier), J. Pure Appl. Algebra, Volume 98 (1995), pp. 229-244 | DOI | MR | Zbl

[34] Y. Lafont; A. Prouté Church-Rosser property and homology of monoids, Math. Struct. Comput. Sci, Volume 1 (1991), pp. 297-326 | DOI | MR | Zbl

[35] J.-L. Loday Higher syzygies, in `Une dégustation topologique: Homotopy theory in the Swiss Alps', Contemp. Math., Volume 265 (2000), pp. 99-127 | MR | Zbl

[36] M. Picantin Petits groupes gaussiens (2000) (Thèse de doctorat, Université de Caen)

[37] M. Picantin The center of thin Gaussian groups, J. Algebra, Volume 245 (2001) no. 1, pp. 92-122 | DOI | MR | Zbl

[38] M. Salvetti Topology of the complement of real hyperplanes in 𝐂 N , Invent. Math., Volume 88 (1987) no. 3, pp. 603-618 | DOI | EuDML | MR | Zbl

[39] M. Salvetti The homotopy type of Artin groups, Math. Res. Letters, Volume 1 (1994), pp. 565-577 | MR | Zbl

[40] H. Sibert Extraction of roots in Garside groups, Comm. in Algebra, Volume 30 (2002) no. 6, pp. 2915-2927 | DOI | MR | Zbl

[41] C. Squier Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra, Volume 49 (1987), pp. 201-217 | DOI | MR | Zbl

[42] C. Squier The homological algebra of Artin groups, Math. Scand., Volume 75 (1995), pp. 5-43 | EuDML | MR | Zbl

[43] C. Squier A finiteness condition for rewriting systems, revision by F. Otto and Y. Kobayashi, Theoret. Compt. Sci., Volume 131 (1994), pp. 271-294 | MR | Zbl

[44] J. Stallings The cohomology of pregroups, Conference on Group Theory, Lecture Notes in Math., Volume 319 (1973), pp. 169-182 | MR | Zbl

[45] W. Thurston Finite state algorithms for the braid group, Circulated notes (1988)

[46] F.V. Vainstein Cohomologies of braid groups, Functional Anal. Appl., Volume 12 (1978), pp. 135-137 | DOI | Zbl

[47] V.V. Vershinin Braid groups and loop spaces, Uspekhi Mat. Nauk, Volume 54 (1999) no. 2, pp. 3-84 | MR | Zbl

Cited by Sources: