Le principal résultat de cet article est une suite exacte pour le groupe abélien des extensions centrales d’un groupe de Lie connexe de dimension infinie par un groupe abélien de Lie pour lequel la composante connexe est un quotient d’un espace vectoriel par un sous-groupe discret. Un point essentiel de ce résultat est qu’il n’est pas restreint aux groupes lissement paracompacts. Par conséquence, il s’applique à tous les groupes de Lie-Banach et de Lie-Fréchet. La suite exacte codifie en particulier les obstructions précises pour l’intégration d’un cocycle d’algèbre de Lie à un cocycle localement lisse des groupes de Lie.
The main result of the present paper is an exact sequence which describes the group of central extensions of a connected infinite-dimensional Lie group by an abelian group whose identity component is a quotient of a vector space by a discrete subgroup. A major point of this result is that it is not restricted to smoothly paracompact groups and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence encodes in particular precise obstructions for a given Lie algebra cocycle to correspond to a locally group cocycle.
Classification : 22E65, 58B20, 58B05
Mots clés : groupe de Lie de dimension infinie, forme différentielle invariante, extension centrale, application de période, cocycle de groupe de Lie, groupe d'homotopie, cocycle local, groupes de difféomorphisme
@article{AIF_2002__52_5_1365_0, author = {Neeb, Karl-Hermann}, title = {Central extensions of infinite-dimensional {Lie} groups}, journal = {Annales de l'Institut Fourier}, pages = {1365--1442}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {5}, year = {2002}, doi = {10.5802/aif.1921}, zbl = {1019.22012}, mrnumber = {1935553}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1921/} }
TY - JOUR AU - Neeb, Karl-Hermann TI - Central extensions of infinite-dimensional Lie groups JO - Annales de l'Institut Fourier PY - 2002 DA - 2002/// SP - 1365 EP - 1442 VL - 52 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1921/ UR - https://zbmath.org/?q=an%3A1019.22012 UR - https://www.ams.org/mathscinet-getitem?mr=1935553 UR - https://doi.org/10.5802/aif.1921 DO - 10.5802/aif.1921 LA - en ID - AIF_2002__52_5_1365_0 ER -
Neeb, Karl-Hermann. Central extensions of infinite-dimensional Lie groups. Annales de l'Institut Fourier, Tome 52 (2002) no. 5, pp. 1365-1442. doi : 10.5802/aif.1921. http://www.numdam.org/articles/10.5802/aif.1921/
[Br93] Topology and Geometry, Graduate Texts in Mathematics, 139, Springer-Verlag, Berlin, 1993 | MR 1224675 | Zbl 0791.55001
[Br97] Sheaf Theory, Graduate Texts in Mathematics, 170, Springer-Verlag, Berlin, 1997 | MR 1481706 | Zbl 0874.55001
[Bry93] Loop Spaces, Characteristic Classes and Geometric Quantization, Progr. in Math., 107, Birkhäuser Verlag, 1993 | MR 1197353 | Zbl 0823.55002
[Ca51] Sur les extensions des groupes topologiques, Brioschi Annali di Mat. Pura et Appl., Ser 4, Volume 32 (1951), pp. 295-370 | Article | MR 49907 | Zbl 0054.01302
[Ca52a] Le troisième théorème fondamental de Lie (Oeuvres I), Volume 2 (1952), pp. 1143-1148
[Ca52b] La topologie des espaces représentifs de groupes de Lie (Oeuvres I), Volume 2 (1952), pp. 1307-1330
[Ca52c] Les représentations linéaires des groupes de Lie (Oeuvres I), Volume 2 (1952), pp. 1339-1350
[Ch46] Theory of Lie Groups I, Princeton Univ. Press, 1946 | MR 82628 | Zbl 0063.00842
[DL66] Espaces fibrés en algèbres de Lie et en groupes, Invent. Math, Volume 1 (1966), pp. 133-151 | Article | MR 197622 | Zbl 0144.01804
[dlH72] Classical Banach Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, Lecture Notes in Math., 285, Springer-Verlag, Berlin, 1972 | MR 476820 | Zbl 0256.22015
[EK64] Non enlargible Lie algebras, Proc. Kon. Ned. Acad. v. Wet. A, Volume 67 (1964), pp. 15-31 | MR 160851 | Zbl 0121.27503
[EL88] Enlargeability of local groups according to Malcev and Cartan-Smith, Hermann, Paris, 1988 | MR 951173 | Zbl 0657.22007
[EML43] Relations between homology and homotopy theory, Proc. Nat. Acad. Sci. U.S.A, Volume 29 (1943), pp. 155-158 | Article | MR 7982 | Zbl 0061.40701
[EML47] Cohomology theory in abstract groups. II, Annals of Math, Volume 48 (1947) no. 2, pp. 326-341 | Article | MR 20996 | Zbl 0029.34101
[Est54] A group theoretic interpretation of area in the elementary geometries, Simon Stevin, Wis. en Natuurkundig Tijdschrift, Volume 32 (1954), pp. 29-38 | MR 97764 | Zbl 0139.14406
[Est62] Local and global groups, Indag. Math. (Proc. Kon. Ned. Akad. v. Wet. Series A), Volume 24 (1962), pp. 391-425 | Zbl 0109.02003
[Est88] Une démonstration de E. Cartan du troisième théorème de Lie, Séminaire Sud-Rhodanien de Géométrie VIII: Actions Hamiltoniennes de Groupes; Troisième Théorème de Lie (1988) | Zbl 0652.17002
[Fu70] Infinite Abelian Groups, I, Acad. Press, New York, 1970 | MR 255673 | Zbl 0209.05503
[Gl01a] Infinite-dimensional Lie groups without completeness restriction, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Volume 55 (2002), pp. 43-59 | Zbl 1020.58009
[Gl01b] Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups (J. Funct. Anal., to appear) | MR 1934608 | Zbl 1022.22021
[Gl01c] Algebras whose groups of units are Lie groups (2001) (Preprint) | MR 1948922 | Zbl 1009.22021
[Go86] The construction of a simply connected Lie group with a given Lie algebra, Russian Math. Surveys, Volume 41 (1986), pp. 207-208 | Article | MR 854249 | Zbl 0613.22005
[God71] Eléments de Topologie Algébrique, Hermann, Paris, 1971 | MR 301725 | Zbl 0218.55001
[Ha82] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc, Volume 7 (1982), pp. 65-222 | Article | MR 656198 | Zbl 0499.58003
[He73] Principal bundles and groups extensions with applications to Hopf algebras, J. Pure and Appl. Algebra, Volume 3 (1973), pp. 219-250 | Article | MR 327871 | Zbl 0275.18012
[Hi76] Differential Topology, Graduate Texts in Mathematics, 33, Springer-Verlag, 1976 | MR 448362 | Zbl 0356.57001
[Ho51] Group extensions of Lie groups I, II, Annals of Math, Volume 54 ; 54 (1951 ; 1951) no. 1 ; 3, p. 96-109 ; 537-551 | Article | MR 41858 | Zbl 0045.30802
[HoMo98] The Structure of Compact Groups, Studies in Math., de Gruyter, Berlin, 1998 | MR 1646190 | Zbl 0919.22001
[Hub61] Homotopical Cohomology and Cech Cohomology, Math. Annalen, Volume 144 (1961), pp. 73-76 | MR 133821 | Zbl 0096.37504
[KM97] The Convenient Setting of Global Analysis, Math. Surveys and Monographs, 53, Amer. Math. Soc., 1997 | MR 1471480 | Zbl 0889.58001
[La99] Fundamentals of Differential Geometry, Graduate Texts in Math, 191, Springer-Verlag, 1999 | MR 1666820 | Zbl 0932.53001
[Ma01] Central extensions of topological current algebras, Geometry and Analysis on Finite- and Infinite-Dimensional Lie groups, Volume 55 (2002), pp. 61-76 | Zbl 1045.17008
[Ma57] Les ensembles boréliens et les extensions des groupes, J. Math, Volume 36 (1957), pp. 171-178 | MR 89998 | Zbl 0080.02303
[MacL63] Homological Algebra, Springer-Verlag, 1963
[Mi59] Convex structures and continuous selections, Can. J. Math, Volume 11 (1959), pp. 556-575 | Article | MR 109344 | Zbl 0093.36603
[Mi83] Remarks on infinite-dimensional Lie groups, Proc. Summer School on Quantum Gravity, Les Houches (1983) | Zbl 0594.22009
[MN01] Central extensions of current groups (2001) (Preprint) | MR 1990915 | Zbl 1029.22025
[MT99] Description of infinite dimensional abelian regular Lie groups, J. Lie Theory (1999), pp. 487-489 | MR 1718235 | Zbl 1012.22036
[Ne01a] Representations of infinite dimensional groups, Infinite Dimensional Kähler Manifolds (To appear in DMV Seminar), Volume 31 (2001)
[Ne01b] Universal central extensions of Lie groups (Acta Appl. Math. to appear) | MR 1926500 | Zbl 1019.22011
[Ne96] A note on central extensions, J. Lie Theory (1996), pp. 207-213 | MR 1424633 | Zbl 0868.22014
[Ne98] Holomorphic highest weight representations of infinite dimensional complex classical groups, J. reine angew. Math, Volume 497 (1998), pp. 171-222 | Article | MR 1617431 | Zbl 0894.22007
[Omo97] Infinite-Dimensional Lie Groups, Translations of Math. Monographs, 158, Amer. Math. Soc., 1997 | MR 1421572 | Zbl 0871.58007
[Pa65] On the homotopy type of certain groups of operators, Topology, Volume 3 (1965), pp. 271-279 | Article | MR 175130 | Zbl 0161.34501
[Pa66] Homotopy theory of infinite dimensional manifolds, Topology, Volume 5 (1965), pp. 1-16 | Article | MR 189028 | Zbl 0138.18302
[PS86] Loop Groups, Oxford University Press, Oxford, 1986 | MR 900587 | Zbl 0618.22011
[Ro95] Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbres de Virasoro et généralisations, Reports on Math. Phys, Volume 35 (1995), pp. 225-266 | Article | MR 1377323 | Zbl 0892.17018
[Se70] Cohomology of topological groups, Symposia Math, Volume 4 (1970), pp. 377-387 | MR 280572 | Zbl 0223.57034
[Se81] Unitary representations of some infinite-dimensional groups, Comm. Math. Phys, Volume 80 (1981), pp. 301-342 | Article | MR 626704 | Zbl 0495.22017
[Sh49] Group extensions of compact Lie groups, Annals of Math (1949), pp. 581-586 | Article | MR 31487 | Zbl 0033.34704
[Si77] Weakly dense subgroups of Banach spaces, Indiana Univ. Math. Journal (1977), pp. 981-986 | Article | MR 458134 | Zbl 0344.46033
[Sp66] Algebraic Topology, McGraw-Hill Book Company, New York, 1966 | MR 210112 | Zbl 0145.43303
[St78] Continuous cohomology of groups and classifying spaces, Bull. of the Amer. Math. Soc (1978), pp. 513-530 | Article | MR 494071 | Zbl 0399.55009
[Ste51] The topology of fibre bundles, Princeton University Press, Princeton, New Jersey, 1951 | MR 39258 | Zbl 0054.07103
[tD91] Topologie, de Gruyter, Berlin -- New York, 1991 | MR 1150244 | Zbl 0731.55001
[Te99] Infinite-dimensional Lie Theory from the Point of View of Functional Analysis (1999) (Ph. D. Thesis, Vienna)
[Ti83] Liesche Gruppen und Algebren, Springer, New York-Heidelberg, 1983 | MR 716684 | Zbl 0506.22011
[TL99] Integrating unitary representations of infinite-dimensional Lie groups, Journal of Funct. Anal., Volume 161 (1999), pp. 478-508 | Article | MR 1674631 | Zbl 0919.22007
[Tu95] An elementary proof of Lie's Third Theorem (1995) (Unpublished note)
[TW87] Central extensions and physics, J. Geom. Physics, Volume 4 (1987) no. 2, pp. 207-258 | Article | MR 948561 | Zbl 0649.58014
[Va85] Geometry of Quantum Theory, Springer-Verlag, 1985 | MR 805158 | Zbl 0581.46061
[Wa83] Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1983 | MR 722297 | Zbl 0516.58001
[We80] Differential Analysis on Complex Manifolds, Graduate Texts in Mathematics, Springer-Verlag, 1980 | MR 608414 | Zbl 0435.32004
[We95] An introduction to homological algebra, Cambridge studies in advanced math, 38, Cambridge Univ. Press, 1995 | MR 1269324 | Zbl 0834.18001
[We95] Funktionalanalysis, Springer-Verlag, Berlin-Heidelberg, 1995 | MR 1787146 | Zbl 0831.46002
Cité par Sources :