On suppose que est une fonction analytique-réelle plurisousharmonique sur une variété complexe connexe et non-compacte . Le résultat principal démontre que si l’ensemble analytique-réel des points où n’est pas fortement -convexe est de dimension ou moins, alors presque tous les sous-niveaux assez grands de sont des variétés complexes fortement -convexes. Pour de dimension 2, c’est un cas spécial d’un théorème de Diederich et Ohsawa. Nous obtenons aussi une version de ce résultat dans le cas où est analytique réelle avec coins.
Suppose is a real analytic plurisubharmonic exhaustion function on a connected noncompact complex manifold . The main result is that if the real analytic set of points at which is not strongly -convex is of dimension at most , then almost every sufficiently large sublevel of is strongly -convex as a complex manifold. For of dimension , this is a special case of a theorem of Diederich and Ohsawa. A version for real analytic with corners is also obtained.
Classification : 32E40, 32F10
Mots clés : cycles analytiques, convexe holomorphiquement, complet
@article{AIF_2001__51_6_1553_0, author = {Napier, Terrence and Ramachandran, Mohan}, title = {Generically strongly $q$-convex complex manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1553--1598}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {6}, year = {2001}, doi = {10.5802/aif.1866}, zbl = {0996.32004}, mrnumber = {1870640}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1866/} }
TY - JOUR AU - Napier, Terrence AU - Ramachandran, Mohan TI - Generically strongly $q$-convex complex manifolds JO - Annales de l'Institut Fourier PY - 2001 DA - 2001/// SP - 1553 EP - 1598 VL - 51 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1866/ UR - https://zbmath.org/?q=an%3A0996.32004 UR - https://www.ams.org/mathscinet-getitem?mr=1870640 UR - https://doi.org/10.5802/aif.1866 DO - 10.5802/aif.1866 LA - en ID - AIF_2001__51_6_1553_0 ER -
Napier, Terrence; Ramachandran, Mohan. Generically strongly $q$-convex complex manifolds. Annales de l'Institut Fourier, Tome 51 (2001) no. 6, pp. 1553-1598. doi : 10.5802/aif.1866. http://www.numdam.org/articles/10.5802/aif.1866/
[Ba1] Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Séminaire F. Norguet : Fonctions de plusieurs variables complexes 1974/75 (Lecture Notes in Math.), Volume vol. 482 (1975), pp. 1-158 | Zbl 0331.32008
[Ba2] Convexité de l'espace des cycles, Bull. Soc. Math. France, Volume 106 (1978), pp. 373-397 | Numdam | MR 518045 | Zbl 0395.32009
[Bi] Conditions for the analyticity of certain sets, Michigan Math. J., Volume 11 (1964), pp. 289-304 | Article | MR 168801 | Zbl 0143.30302
[BrC1] Sur la structure des sous-ensembles analytiques-réels, C. R. Acad. Sci. Paris, Volume 244 (1957), pp. 988-990 | MR 86108 | Zbl 0081.17201
[BrC2] Sur les composantes irréductibles d'un sous-ensemble analytique-réel, C. R. Acad. Sci. Paris, Volume 244 (1957), pp. 1123-1126 | MR 88528 | Zbl 0081.39101
[BrW] Quelque propriétés fondamentales des ensembles analytiques-réels, Comm. Math. Helv., Volume 33 (1959), pp. 132-160 | Article | MR 102094 | Zbl 0100.08101
[Cam] Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France, Volume 122 (1994) no. 2, pp. 255-284 | Numdam | MR 1273904 | Zbl 0810.32013
[Car] Quotients of complex analytic spaces, Contributions to function theory, Internat. colloq. function theory, Tata Inst. of Fundamental Research, Bombay (1960) | Zbl 0122.08702
[Co] Complete locally pluripolar sets, J. reine and angew. Math., Volume 412 (1990), pp. 108-112 | Article | MR 1074376 | Zbl 0711.32008
[De1] Estimations pour l'opérateur d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. Ecole Norm. Sup., Volume 15 (1982), pp. 457-511 | Numdam | MR 690650 | Zbl 0507.32021
[De2] Cohomology of q-convex spaces in top degrees, Math. Z., Volume 204 (1990), pp. 283-295 | Article | MR 1055992 | Zbl 0682.32017
[DiF1] Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math., Volume 39 (1977), pp. 129-141 | Article | MR 437806 | Zbl 0353.32025
[DiF2] Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J., Volume 44 (1977), pp. 641-662 | Article | MR 447634 | Zbl 0381.32014
[DiF3] Pseudoconvex domains with real-analytic boundary, Ann. Math., Volume 107 (1978), pp. 371-384 | Article | MR 477153 | Zbl 0378.32014
[DiO] A Levi problem on two-dimensional complex manifolds, Math. Ann., Volume 261 (1982), pp. 255-261 | Article | MR 675738 | Zbl 0502.32010
[DoG] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., Volume 140 (1960), pp. 94-123 | Article | MR 148939 | Zbl 0095.28004
[Fr] Local complex foliation of real submanifolds, Math. Ann., Volume 209 (1974), pp. 1-30 | Article | MR 346185 | Zbl 0267.32006
[Fu] Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci., Volume 14 (1978/79) no. 1, pp. 1-52 | Article | MR 486648 | Zbl 0409.32016
[G] On Levi's problem and the imbedding of real analytic manifolds, Ann. Math., Volume 68 (1958), pp. 460-472 | Article | MR 98847 | Zbl 0108.07804
[GR] Kählersche Mannigfältigkeiten mit hyper-q-konvexen Rand, Problems in analysis (A Symposium in Honor of S. Bochner, Princeton 1969) (1970), pp. 61-79 | Zbl 0211.10302
[GW] Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble), Volume 25 (1975) no. 1, pp. 215-235 | Article | Numdam | MR 382701 | Zbl 0307.31003
[HM] Plurisubharmonic functions and a generalized Dirichlet problem, Mich. Math. J, Volume 25 (1978), pp. 299-316 | Article | MR 512901 | Zbl 0378.32013
[Hu] The Levi problem on pseudoconvex manifolds which are not strongly pseudoconvex, Math. Ann., Volume 219 (1976), pp. 127-137 | Article | MR 409892 | Zbl 0313.32017
[L] Sulle funzione di due o più variabli complesse, Rend. Accad. Naz. Lincei. V, Volume 14 (1905), pp. 492-499
[Na] Vanishing theorems for weakly 1-complete manifolds II, Publ. R.I.M.S., Kyoto, Volume 10 (1974), pp. 101-110 | Article | MR 382735 | Zbl 0298.32019
[NR1] Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal., Volume 5 (1995), pp. 809-851 | Article | MR 1354291 | Zbl 0860.53045
[NR2] The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds, Ann. Inst. Fourier (Grenoble), Volume 47 (1997) no. 5, pp. 1345-1365 | Article | Numdam | MR 1600387 | Zbl 0904.32008
[Ns] The Levi problem for complex spaces II, Math. Ann., Volume 146 (1962), pp. 195-216 | Article | MR 182747 | Zbl 0131.30801
[O] Completeness of noncompact analytic spaces, Publ. R.I.M.S., Kyoto, Volume 20 (1984), pp. 683-692 | Article | MR 759689 | Zbl 0568.32008
[Re] Reduction of complex spaces, Seminars on analytic functions, Inst. for Advanced Study, Princeton (1957) | Zbl 0095.06204
[Ri] Stetige streng pseudokonvexe Funktionen, Math. Ann., Volume 175 (1968), pp. 257-286 | Article | MR 222334 | Zbl 0153.15401
[Si1] Every Stein subvariety admits a Stein neighborhood, Invent. Math., Volume 38 (1976), pp. 89-100 | Article | MR 435447 | Zbl 0343.32014
[Si2] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom., Volume 17 (1982), pp. 55-138 | MR 658472 | Zbl 0497.32025
[Ste] Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. Séminaire Pierre Lelong (Analyse), Séminaire Pierre Lelong (Analyse), Année 1973--1974 (Lect. Notes in Math.), Volume vol. 474 (1975), pp. 155-179 | Zbl 0309.32011
[Sto] The fiber integral is constant, Math. Zeitsch., Volume 104 (1968), pp. 65-73 | Article | MR 224868 | Zbl 0164.09302
[Wu] On certain Kähler manifolds which are -complete, Complex analysis of Several Variables (Proceedings of Symposia in Pure Mathematics), Volume vol. 41 (1984), pp. 253-276 | Zbl 0552.32015
Cité par Sources :