Variétés complexes compactes : une généralisation de la construction de Meersseman et López de Medrano-Verjovsky
Annales de l'Institut Fourier, Tome 51 (2001) no. 5, pp. 1259-1297.

Nous construisons de nouvelles variétés complexes compactes comme espaces d’orbites d’actions linéaires de n , généralisant en cela les constructions de Meersseman. Nous donnons également certaines propriétés de ces variétés.

In this paper, we construct new compact complex manifolds as spaces of orbits of linear actions on n , generalizing Meersseman’s results. We also give some properties of our manifolds.

DOI : https://doi.org/10.5802/aif.1855
Classification : 32Q99,  32M05,  05A05
Mots clés : variétés complexes compactes, groupes de Lie abéliens complexes, combinatoire sur les ensembles finis
@article{AIF_2001__51_5_1259_0,
     author = {Bosio, Fr\'ed\'eric},
     title = {Vari\'et\'es complexes compactes : une g\'en\'eralisation de la construction de {Meersseman} et {L\'opez} de {Medrano-Verjovsky}},
     journal = {Annales de l'Institut Fourier},
     pages = {1259--1297},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {51},
     number = {5},
     year = {2001},
     doi = {10.5802/aif.1855},
     zbl = {0994.32018},
     mrnumber = {1860666},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/aif.1855/}
}
TY  - JOUR
AU  - Bosio, Frédéric
TI  - Variétés complexes compactes : une généralisation de la construction de Meersseman et López de Medrano-Verjovsky
JO  - Annales de l'Institut Fourier
PY  - 2001
DA  - 2001///
SP  - 1259
EP  - 1297
VL  - 51
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1855/
UR  - https://zbmath.org/?q=an%3A0994.32018
UR  - https://www.ams.org/mathscinet-getitem?mr=1860666
UR  - https://doi.org/10.5802/aif.1855
DO  - 10.5802/aif.1855
LA  - fr
ID  - AIF_2001__51_5_1259_0
ER  - 
Bosio, Frédéric. Variétés complexes compactes : une généralisation de la construction de Meersseman et López de Medrano-Verjovsky. Annales de l'Institut Fourier, Tome 51 (2001) no. 5, pp. 1259-1297. doi : 10.5802/aif.1855. http://www.numdam.org/articles/10.5802/aif.1855/

[Akh] D.N. Akhiezer Lie group actions in complex analysis, Aspects of Math. (1995) | Zbl 0845.22001

[CE] E. Calabi; B. Eckmann A class of complex manifolds which are not algebraic, Annals of Math., Volume 58 (1953), pp. 494-500 | Article | MR 57539 | Zbl 0051.40304

[CKP] C. Camacho; N. Kuiper; J. Palis The topology of holomorphic flows with singularities, Publ. Math. I.H.E.S., Volume 48 (1979), pp. 5-38 | Numdam | MR 516913 | Zbl 0411.58018

[Hae] A. Haefliger Deformations of transversely holomorphic flows on spheres and deformations of Hopf manifolds, Comp. Math., Volume 55 (1985), pp. 241-251 | Numdam | MR 795716 | Zbl 0582.32026

[Ho] H. Hopf Zur Topologie der komplexen Manifaltigkeiten, Studies and Essays presented to R. Courant, New York, 1948 | MR 23054 | Zbl 0033.02501

[Ino] M. Inoue On surfaces of class VII 0 , Invent. Math., Volume 24 (1974), pp. 269-310 | Article | MR 342734 | Zbl 0283.32019

[LDM] S. López de Medrano The topology of the intersection of quadrics in n , Lecture Notes in Math., Volume 1370 (1989), pp. 280-292 | Article | MR 1000384 | Zbl 0681.57020

[LDMV] S. López de Medrano; A. Verjovsky A new family of complex compact non symplectic manifolds, Bol. Soc. Math. Bra., Volume 28 (1997) no. 2, pp. 253-269 | Article | MR 1479504 | Zbl 0901.53021

[LN1] J.-J. Loeb; M. Nicolau Holomorphic flows and complex structures on products of odd dimensional spheres, Math. Annalen, Volume 306 (1996), pp. 781-817 | Article | MR 1418353 | Zbl 0860.32001

[LN2] J.-J. Loeb; M. Nicolau On the complex geometry of a class of non-kählerian manifolds, Israel J. Math., Volume 110 (1999), pp. 371-379 | Article | MR 1750427 | Zbl 0956.53050

[Me] L. Meersseman Un procédé géométrique de construction de variétés compactes, complexes, non algébriques en dimension quelconque (1998) (Thèse de doctorat, Université de Lille 1)

[Me′] L. Meersseman A new geometric construction of compact complex manifolds in any dimension, Math. Annalen, Volume 317 (2000), pp. 79-115 | Article | MR 1760670 | Zbl 0958.32013

[Wi] J. Winkelmann Complex analytic geometry of complex parallelizable manifolds, Mémoires S.M.F., nouv. série, Volume 72-73 (1998) | Numdam | MR 1654465 | Zbl 0918.32015

Cité par Sources :