We present an algorithm for converting a branched cover description of a 3-manifold into a description by surgery.
Nous présentons un algorithme permettant de convertir une présentation de variété de dimension 3 comme revêtement simple à trois feuillets de la sphère en une présentation de chirurgie.
Mot clés : 3-variété, revêtement ramifié, chirurgie, entrelacs, tresse
Keywords: 3-manifold, branched cover, surgery, link, braid
@article{AIF_2001__51_5_1229_0, author = {Harou, Franck}, title = {Description chirurgicale des rev\^etements triples simples de $S^3$ ramifi\'es le long d{\textquoteright}un entrelacs}, journal = {Annales de l'Institut Fourier}, pages = {1229--1242}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {5}, year = {2001}, doi = {10.5802/aif.1853}, mrnumber = {1860664}, zbl = {0987.57005}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.1853/} }
TY - JOUR AU - Harou, Franck TI - Description chirurgicale des revêtements triples simples de $S^3$ ramifiés le long d’un entrelacs JO - Annales de l'Institut Fourier PY - 2001 SP - 1229 EP - 1242 VL - 51 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1853/ DO - 10.5802/aif.1853 LA - fr ID - AIF_2001__51_5_1229_0 ER -
%0 Journal Article %A Harou, Franck %T Description chirurgicale des revêtements triples simples de $S^3$ ramifiés le long d’un entrelacs %J Annales de l'Institut Fourier %D 2001 %P 1229-1242 %V 51 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1853/ %R 10.5802/aif.1853 %G fr %F AIF_2001__51_5_1229_0
Harou, Franck. Description chirurgicale des revêtements triples simples de $S^3$ ramifiés le long d’un entrelacs. Annales de l'Institut Fourier, Volume 51 (2001) no. 5, pp. 1229-1242. doi : 10.5802/aif.1853. http://www.numdam.org/articles/10.5802/aif.1853/
[1] Braids, links and mapping class groups, Annals of Math. Studies, vol. 84, Univ. Press, Princeton, 1975 | MR | Zbl
[2] 3-fold branched coverings and the mapping class group of a surface, Lecture Note, 1167, Springer-Verlag, 1985 | MR | Zbl
[3] Knots, Studies in Math., vol. 5, De Gruyter, 1985 | MR | Zbl
[4] A fast method for comparing braids, Adv. Math., Volume 125 (1997) no. 2, pp. 200-235 | DOI | MR | Zbl
[5]
(2000) (Thèse de Doctorat, Université de Rennes 1)[6] A representation of closed orientable 3-manifolds as 3-fold branched coverings of , Bull. Amer. Soc., Volume 80 (1974), pp. 845-846 | DOI | MR | Zbl
[7] Surgery on links and double branched covers of , Knots, Groups and 3-Manifolds (Ann. Math. Stud.), Volume vol. 84 (227-259) | Zbl
[8] Three-manifolds as 3-fold branched covers of , Quart. J. Math. Oxford, Volume 27 (1976) no. 2, pp. 85-90 | DOI | MR | Zbl
[9] Knots, Links, Braids and 3-manifolds, Math. Monograph, vol. 154, AMS Trans., Springer-Verlag, 1997 | Zbl
[10] Knots and links, Publish or Perish, 1977 | MR | Zbl
[11] Representation of links by braids : a new algorithm, Comment. Math. Helv., Volume 65 (1990) no. 1, pp. 104-113 | DOI | MR | Zbl
Cited by Sources: