We continue our programme of extending the Roman-Rota umbral calculus to the setting of delta operators over a graded ring with a view to applications in algebraic topology and the theory of formal group laws. We concentrate on the situation where is free of additive torsion, in which context the central issues are number- theoretic questions of divisibility. We study polynomial algebras which admit the action of two delta operators linked by an invertible power series, and make related constructions motivated by the Hattori-Stong theorem of algebraic topology. Our treatment is couched purely in terms of the umbral calculus, but inspires novel topological applications. In particular we obtain a generalised form of the Hattori-Stong theorem.
Nous poursuivons notre projet en vue d’étendre le calcul “umbral” de Roman-Rota au contexte des opérateurs “delta” sur un anneau gradué dans le but de développer des applications en topologie algébrique et en théorie des lois de groupes formels. Nous visons la situation où est libre de torsion additive; dans cette situation les questions centrales sont celles de la divisibilité. Nous étudions les algèbres de polynômes qui admettent l’action de deux opérateurs “delta” liés par une série inversible, et nous proposons des constructions connexes motivées par le théorème de Hattori-Stong en topologie algébrique. Notre traitement se poursuit exclusivement en termes de calcul “umbral”, ce qui nous mène à des applications topologiques nouvelles. En particulier, nous arrivons à une forme généralisée du théorème de Hattori-Stong.
Keywords: umbral calculus, Hattori-Stong theorems
Mot clés : calcul umbral, théorèmes de Hattori-Stong
@article{AIF_2001__51_2_297_0, author = {Clarke, Francis and Hunton, John and Ray, Nigel}, title = {Extensions of umbral calculus {II:} double delta operators, {Leibniz} extensions and {Hattori-Stong} theorems}, journal = {Annales de l'Institut Fourier}, pages = {297--336}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {2}, year = {2001}, doi = {10.5802/aif.1824}, mrnumber = {1824956}, zbl = {0962.05012}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1824/} }
TY - JOUR AU - Clarke, Francis AU - Hunton, John AU - Ray, Nigel TI - Extensions of umbral calculus II: double delta operators, Leibniz extensions and Hattori-Stong theorems JO - Annales de l'Institut Fourier PY - 2001 SP - 297 EP - 336 VL - 51 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1824/ DO - 10.5802/aif.1824 LA - en ID - AIF_2001__51_2_297_0 ER -
%0 Journal Article %A Clarke, Francis %A Hunton, John %A Ray, Nigel %T Extensions of umbral calculus II: double delta operators, Leibniz extensions and Hattori-Stong theorems %J Annales de l'Institut Fourier %D 2001 %P 297-336 %V 51 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1824/ %R 10.5802/aif.1824 %G en %F AIF_2001__51_2_297_0
Clarke, Francis; Hunton, John; Ray, Nigel. Extensions of umbral calculus II: double delta operators, Leibniz extensions and Hattori-Stong theorems. Annales de l'Institut Fourier, Volume 51 (2001) no. 2, pp. 297-336. doi : 10.5802/aif.1824. http://www.numdam.org/articles/10.5802/aif.1824/
[1] On Chern characters and the structure of the unitary group, Proc. Cambridge Philos. Soc., Volume 57 (1961), pp. 189-199 | DOI | MR | Zbl
[2] Stable homotopy and generalised homology, University of Chicago Press, Chicago, 1974 | MR | Zbl
[3] Combinatorial and arithmetic identities based on formal group laws, Algebraic topology, Barcelona 1986 (Lecture Notes in Math.), Volume 1298 (1987), pp. 17-34 | Zbl
[4] Some properties of Hurwitz series, Duke Math. J, Volume 16 (1949), pp. 285-295 | DOI | MR | Zbl
[5] The universal von Staudt theorems, Trans. Amer. Math. Soc., Volume 315 (1989), pp. 591-603 | DOI | MR | Zbl
[6] Analyse Combinatoire, Presses Universitaires de France, 1970 | MR | Zbl
[6] Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht, 1974 | MR | Zbl
[7] Sur les produits tensoriels, Ann. Sci. École Norm. Sup, Série 3, Volume 64 (1947), pp. 101-117 | Numdam | MR | Zbl
[8] Formal groups, Lecture Notes in Math., 74, Springer, Berlin-Heidelberg, 1968 | MR | Zbl
[9] Abelian groups, Hungarian Acad. Sci., Budapest (1958) | MR | Zbl
[10] Die Gruppe der -primären Zahlen für einen Primteiler von , J. Reine Angew. Math., Volume 176 (1936), pp. 174-183 | JFM
[11] Integral characteristic numbers for weakly almost complex manifolds, Topology, Volume 5 (1966), pp. 259-280 | DOI | MR | Zbl
[12] Formal groups and applications, Academic Press, New York, 1978 | MR | Zbl
[13] and typical formal groups, Osaka J. Math., Volume 12 (1975), pp. 357-363 | MR | Zbl
[14] Homological properties of comodules over and , Amer. J. Math., Volume 98 (1976), pp. 591-610 | DOI | MR | Zbl
[15] Supersingular elliptic curves and congruences for Legendre polynomials, Elliptic curves and modular forms in algebraic topology, Princeton (1986) (Lecture Notes in Math.), Volume 1326 (1988), pp. 69-83 | Zbl
[16] The topological -expansion principle, Topology, Volume 38 (1999), pp. 387-425 | DOI | MR | Zbl
[17] Morava stabilizer algebras and the localisation of Novikov's -term, Duke Math. J., Volume 44 (1977), pp. 433-447 | DOI | MR | Zbl
[18] On the cobordism ring and a complex analogue (part I), Amer. J. Math., Volume 82 (1960), pp. 505-521 | MR | Zbl
[19] On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 1293-1298 | DOI | MR | Zbl
[20] Extensions of umbral calculus: penumbral coalgebras and generalised Bernoulli numbers, Adv. Math., Volume 61 (1986), pp. 49-100 | DOI | MR | Zbl
[21] Symbolic calculus: a 19th century approach to and , Homotopy theory, Durham (1985) (London Math. Soc. Lecture Note, Ser. 117) (1987), pp. 195-238 | Zbl
[22] Stirling and Bernoulli numbers for complex oriented homology theories, Algebraic topology, Arcata, CA, (1986) (Lecture Notes in Math.), Volume 1370 (1989), pp. 362-373 | Zbl
[23] Loops on the 3-sphere and umbral calculus, Algebraic topology, Evanston, IL (1988) (Contemp. Math.), Volume 96 (1989), pp. 297-302 | Zbl
[24] Universal constructions in umbral calculus, Mathematical essays in honor of Gian-Carlo Rota, Cambridge, MA (1996) (1998), pp. 343-357 | Zbl
[25] Combinatorial identities, Krieger, Huntington, NY, 1979 | MR
[26] The umbral calculus, Academic Press, Orlando, 1984 | MR | Zbl
[27] A note on the Stong-Hattori theorem, Illinois J. Math., Volume 17 (1973), pp. 285-289 | MR | Zbl
[28] Kummer congruences for the coefficients of Hurwitz series, Acta Arith., Volume 40 (1982), pp. 175-191 | MR | Zbl
[29] Kummer congruences in formal groups and algebraic groups of dimension one, Rocky Mountain J. Math., Volume 15 (1985), pp. 1-11 | DOI | MR | Zbl
[30] Relations among characteristic numbers I, Topology, Volume 4 (1965), pp. 267-281 | DOI | MR | Zbl
Cited by Sources: