[Un contre-exemple à la décomposition lisse de Hodge pour des feuilletages généraux et à une classe de formules de trace dynamique]
Nous construisons un feuilletage à feuilles denses et de codimension deux sur la variété de Heisenberg tel que la décomposition de Hodge feuilletée ne soit pas vérifiée. Nous démontrons aussi qu'un certain type de formules de trace dynamique reliant les orbites périodiques aux traces sur la cohomologie feuilletée, ne sont pas vraies pour des flots arbitraires.
We construct a two dimensional foliation with dense leaves on the Heisenberg nilmanifold for which smooth leafwise Hodge decomposition does not hold. It is also shown that a certain type of dynamical trace formulas relating periodic orbits with traces on leafwise cohomologies does not hold for arbitrary flows.
Classification : 53C12, 37C27, 58J60
Mots clés : théorie de Hodge, formule de trace, feuilletage
@article{AIF_2001__51_1_209_0, author = {Deninger, Christopher and Singhof, Wilhelm}, title = {A counterexample to smooth leafwise {Hodge} decomposition for general foliations and to a type of dynamical trace formulas}, journal = {Annales de l'Institut Fourier}, pages = {209--219}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {1}, year = {2001}, doi = {10.5802/aif.1821}, zbl = {0997.58017}, mrnumber = {1821074}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1821/} }
TY - JOUR AU - Deninger, Christopher AU - Singhof, Wilhelm TI - A counterexample to smooth leafwise Hodge decomposition for general foliations and to a type of dynamical trace formulas JO - Annales de l'Institut Fourier PY - 2001 DA - 2001/// SP - 209 EP - 219 VL - 51 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1821/ UR - https://zbmath.org/?q=an%3A0997.58017 UR - https://www.ams.org/mathscinet-getitem?mr=1821074 UR - https://doi.org/10.5802/aif.1821 DO - 10.5802/aif.1821 LA - en ID - AIF_2001__51_1_209_0 ER -
Deninger, Christopher; Singhof, Wilhelm. A counterexample to smooth leafwise Hodge decomposition for general foliations and to a type of dynamical trace formulas. Annales de l'Institut Fourier, Tome 51 (2001) no. 1, pp. 209-219. doi : 10.5802/aif.1821. http://www.numdam.org/articles/10.5802/aif.1821/
[AGH] Flows on homogeneous spaces, Ann. Math. Studies, 53, Princeton, 1963 | Zbl 0106.36802
[AK1] Long time behaviour of leafwise heat flow for Riemannian foliations (To appear in Compositio Math.) | Zbl 0982.58019
[AK2] Distributional Betti numbers of Lie Foliations (2000) (Manuscript)
[AT] Hodge decomposition along the leaves of a Riemannian foliation, J. Functional Analysis, Volume 99 (1991), pp. 443-458 | Article | MR 1121621 | Zbl 0746.58011
[CR] Global solvability on compact nilmanifolds, Transactions AMS, Volume 301 (1987), pp. 343-373 | Article | MR 879578 | Zbl 0631.58034
[D1] Some analogies between number theory and dynamical systems on foliated spaces, ICM (Doc. Math. J. DMV), Volume Extra Volume I (1998), pp. 23-46 | Zbl 0899.14001
[D2] On dynamical systems and their possible significance for Arithmetic Geometry II (2000) (Preprint) | MR 1724887 | Zbl 02106437
[DS] A note on dynamical trace formulas (2000) (Preprint) | MR 1868467 | Zbl 01787203
[G] Lectures on spectral theory of elliptic operators, Duke Math. J., Volume 44 (1977), pp. 485-517 | Article | MR 448452 | Zbl 0463.58024
[Go] Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc., Volume 143 (1969), pp. 55-76 | Article | MR 248285 | Zbl 0189.14102
[GS] Geometric asymptotics, Math. Surveys, 14, Amer. Math. Soc., Providence, R.I, 1977 | MR 516965 | Zbl 0364.53011
[H] On Frobenius reciprocity for unipotent algebraic groups over , Amer. J. of Math., Volume 93 (1971), pp. 163-172 | Article | MR 281842 | Zbl 0215.11803
[MS] Global Analysis on foliated spaces, MSRI Publications, 9, Springer, 1988 | MR 918974 | Zbl 0648.58034
[P] On Ruelle's zeta function, Israel Math. Conf. Proc., Volume 3 (1990), pp. 163-184 | MR 1159114 | Zbl 0721.58041
[R1] Decomposition of the -space of a general compact nilmanifold, Amer. J. of Math., Volume 93 (1971), pp. 173-190 | Article | MR 284546 | Zbl 0265.43012
[R2] Global solvability on compact Heisenberg manifolds, Transactions AMS (1982), pp. 309-317 | Article | MR 664044 | Zbl 0503.35003
Cité par Sources :