On the isometries of reflexive Orlicz spaces
Annales de l'Institut Fourier, Volume 13 (1963) no. 1, pp. 99-109.

On obtient des expressions explicites pour les pseudo-produits scalaires (semi-inner-products) compatibles avec une norme d’Orlicz. On montre qu’un opérateur “hermitien” borné H, sur un espace réflexif d’Orlicz X, est de la forme : Hf=hf, h réelle L , et a un espace de mesure “non-atomique”. On déduit qu’une isométrie U sur X, est de la forme (Uf)(·)=u(·)f(T·), uX, T un isomorphisme mesurable d’ensembles.

@article{AIF_1963__13_1_99_0,
     author = {Lumer, Gunter},
     title = {On the isometries of reflexive {Orlicz} spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {99--109},
     publisher = {Institut Fourier},
     volume = {13},
     number = {1},
     year = {1963},
     doi = {10.5802/aif.132},
     zbl = {0189.43201},
     mrnumber = {28 #1485},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.132/}
}
TY  - JOUR
AU  - Lumer, Gunter
TI  - On the isometries of reflexive Orlicz spaces
JO  - Annales de l'Institut Fourier
PY  - 1963
DA  - 1963///
SP  - 99
EP  - 109
VL  - 13
IS  - 1
PB  - Institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.132/
UR  - https://zbmath.org/?q=an%3A0189.43201
UR  - https://www.ams.org/mathscinet-getitem?mr=28 #1485
UR  - https://doi.org/10.5802/aif.132
DO  - 10.5802/aif.132
LA  - en
ID  - AIF_1963__13_1_99_0
ER  - 
%0 Journal Article
%A Lumer, Gunter
%T On the isometries of reflexive Orlicz spaces
%J Annales de l'Institut Fourier
%D 1963
%P 99-109
%V 13
%N 1
%I Institut Fourier
%U https://doi.org/10.5802/aif.132
%R 10.5802/aif.132
%G en
%F AIF_1963__13_1_99_0
Lumer, Gunter. On the isometries of reflexive Orlicz spaces. Annales de l'Institut Fourier, Volume 13 (1963) no. 1, pp. 99-109. doi : 10.5802/aif.132. http://www.numdam.org/articles/10.5802/aif.132/

[1] S. Banach, Théorie des opérations linéaires, Warszawa, 1932. | JFM | Zbl

[2] R. V. Kadison, Isometries of operator algebras, Ann. of Math., vol. 54 (1951), pp. 325-338. | MR | Zbl

[3] M. A. Krasnoselski and Ya. Ruticki, Convex functions and Orliez spaces, (in Russian), Moscow, 1958.

[4] J. Lamperti, On the isometries of certain function spaces, Pacific J. Math., Vol. 2 (1958), pp. 459-466. | MR | Zbl

[5] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc., Vol. 100 (1961), pp. 29-43. | MR | Zbl

[6] W. A. J. Luxemburg, Banach function spaces, Thesis, Assen. 1955. | MR | Zbl

[7] E. J. Mcshane, Linear functionals on certain Banach spaces, Proc. Amer. Math. Soc., Vol. 1 (1950), pp. 402-408. | MR | Zbl

[8] W. Orlicz, Ueber eine gewisse Klasse von Raumen von Typus B, Bulletin, Inst. Acad. Polon. Sci., Ser. A, (1932). | JFM | Zbl

[9] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., Vol. 41 (1937), pp. 375-481. | JFM | MR | Zbl

[10] A. Zygmund, Trigonometrical series, Warszawa, 1935, (also Dover publ. 1955). | Zbl

Cited by Sources: